高级检索
当前位置: 首页 > 详情页

Artificial intelligence performance in image-based ovarian cancer identification: A systematic review and meta-analysis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]China Med Univ, Dept Clin Epidemiol, Shengjing Hosp, Shenyang, Peoples R China [2]China Med Univ, Clin Res Ctr, Shengjing Hosp, Shenyang, Peoples R China [3]China Med Univ, Key Lab Precis Med Res Major Chron Dis, Shengjing Hosp, Shenyang, Peoples R China [4]China Med Univ, Dept Obstet & Gynecol, Shengjing Hosp, Shenyang, Peoples R China [5]China Med Univ, Dept Radiol, Shengjing Hosp, Shenyang, Peoples R China [6]China Med Univ, Dept Ultrasound, Shengjing Hosp, Shenyang, Peoples R China [7]China Med Univ, Dept Intelligent Med, Shenyang, Peoples R China [8]Tongji Hosp,Natl Clin Res Ctr Obstet & Gynecol,Canc Biol Res Ctr,Key Lab,Minist Educ,Wuhan,Peoples R China [9]Tongji Hosp,Dept Gynecol & Obstet,Wuhan,Peoples R China [10]China Med Univ, Clin Res Ctr, Dept Clin Epidemiol, Dept Obstet & Gynecol,Shengjing Hosp, 36 San Hao St, Shenyang 110004, Liaoning, Peoples R China
出处:
ISSN:

关键词: Artificial intelligence Medical imaging Meta-analysis Ovarian cancer

摘要:
Background Accurate identification of ovarian cancer (OC) is of paramount importance in clinical treatment success. Artificial intelligence (AI) is a potentially reliable assistant for the medical imaging recognition. We systematically review articles on the diagnostic performance of AI in OC from medical imaging for the first time. Methods The Medline, Embase, IEEE, PubMed, Web of Science, and the Cochrane library databases were searched for related studies published until August 1, 2022. Inclusion criteria were studies that developed or used AI algorithms in the diagnosis of OC from medical images. The binary diagnostic accuracy data were extracted to derive the outcomes of interest: sensitivity (SE), specificity (SP), and Area Under the Curve (AUC). The study was registered with the PROSPERO, CRD42022324611. Findings Thirty-four eligible studies were identified, of which twenty-eight studies were included in the meta-analysis with a pooled SE of 88% (95%CI: 85-90%), SP of 85% (82-88%), and AUC of 0.93 (0.91-0.95). Analysis for different algorithms revealed a pooled SE of 89% (85-92%) and SP of 88% (82-92%) for machine learning; and a pooled SE of 88% (84-91%) and SP of 84% (80-87%) for deep learning. Acceptable diagnostic performance was demonstrated in subgroup analyses stratified by imaging modalities (Ultrasound, Magnetic Resonance Imaging, or Computed Tomography), sample size (<= 300 or > 300), AI algorithms versus clinicians, year of publication (before or after 2020), geographical distribution (Asia or non Asia), and the different risk of bias levels (>= 3 domain low risk or < 3 domain low risk). Interpretation AI algorithms exhibited favorable performance for the diagnosis of OC through medical imaging. More rigorous reporting standards that address specific challenges of AI research could improve future studies. Copyright (c) 2022 The Author(s). Published by Elsevier Ltd.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 医学:内科
JCR分区:
出版当年[2020]版:
最新[2023]版:
Q1 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]China Med Univ, Dept Clin Epidemiol, Shengjing Hosp, Shenyang, Peoples R China [2]China Med Univ, Clin Res Ctr, Shengjing Hosp, Shenyang, Peoples R China [3]China Med Univ, Key Lab Precis Med Res Major Chron Dis, Shengjing Hosp, Shenyang, Peoples R China
通讯作者:
通讯机构: [1]China Med Univ, Dept Clin Epidemiol, Shengjing Hosp, Shenyang, Peoples R China [2]China Med Univ, Clin Res Ctr, Shengjing Hosp, Shenyang, Peoples R China [3]China Med Univ, Key Lab Precis Med Res Major Chron Dis, Shengjing Hosp, Shenyang, Peoples R China [4]China Med Univ, Dept Obstet & Gynecol, Shengjing Hosp, Shenyang, Peoples R China [10]China Med Univ, Clin Res Ctr, Dept Clin Epidemiol, Dept Obstet & Gynecol,Shengjing Hosp, 36 San Hao St, Shenyang 110004, Liaoning, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)