单位:[1]China Med Univ, Dept Clin Epidemiol, Shengjing Hosp, Shenyang, Peoples R China中国医科大学附属盛京医院中国医科大学盛京医院[2]China Med Univ, Clin Res Ctr, Shengjing Hosp, Shenyang, Peoples R China中国医科大学附属盛京医院中国医科大学盛京医院[3]China Med Univ, Key Lab Precis Med Res Major Chron Dis, Shengjing Hosp, Shenyang, Peoples R China中国医科大学附属盛京医院中国医科大学盛京医院[4]China Med Univ, Dept Obstet & Gynecol, Shengjing Hosp, Shenyang, Peoples R China中国医科大学附属盛京医院中国医科大学盛京医院[5]China Med Univ, Dept Radiol, Shengjing Hosp, Shenyang, Peoples R China中国医科大学附属盛京医院中国医科大学盛京医院[6]China Med Univ, Dept Ultrasound, Shengjing Hosp, Shenyang, Peoples R China中国医科大学附属盛京医院中国医科大学盛京医院[7]China Med Univ, Dept Intelligent Med, Shenyang, Peoples R China[8]Tongji Hosp,Natl Clin Res Ctr Obstet & Gynecol,Canc Biol Res Ctr,Key Lab,Minist Educ,Wuhan,Peoples R China妇产科学系肿瘤生物医学中心华中科技大学同济医学院附属同济医院妇科肿瘤[9]Tongji Hosp,Dept Gynecol & Obstet,Wuhan,Peoples R China华中科技大学同济医学院附属同济医院普通妇科妇产科学系[10]China Med Univ, Clin Res Ctr, Dept Clin Epidemiol, Dept Obstet & Gynecol,Shengjing Hosp, 36 San Hao St, Shenyang 110004, Liaoning, Peoples R China中国医科大学附属盛京医院中国医科大学盛京医院
Background Accurate identification of ovarian cancer (OC) is of paramount importance in clinical treatment success. Artificial intelligence (AI) is a potentially reliable assistant for the medical imaging recognition. We systematically review articles on the diagnostic performance of AI in OC from medical imaging for the first time. Methods The Medline, Embase, IEEE, PubMed, Web of Science, and the Cochrane library databases were searched for related studies published until August 1, 2022. Inclusion criteria were studies that developed or used AI algorithms in the diagnosis of OC from medical images. The binary diagnostic accuracy data were extracted to derive the outcomes of interest: sensitivity (SE), specificity (SP), and Area Under the Curve (AUC). The study was registered with the PROSPERO, CRD42022324611. Findings Thirty-four eligible studies were identified, of which twenty-eight studies were included in the meta-analysis with a pooled SE of 88% (95%CI: 85-90%), SP of 85% (82-88%), and AUC of 0.93 (0.91-0.95). Analysis for different algorithms revealed a pooled SE of 89% (85-92%) and SP of 88% (82-92%) for machine learning; and a pooled SE of 88% (84-91%) and SP of 84% (80-87%) for deep learning. Acceptable diagnostic performance was demonstrated in subgroup analyses stratified by imaging modalities (Ultrasound, Magnetic Resonance Imaging, or Computed Tomography), sample size (<= 300 or > 300), AI algorithms versus clinicians, year of publication (before or after 2020), geographical distribution (Asia or non Asia), and the different risk of bias levels (>= 3 domain low risk or < 3 domain low risk). Interpretation AI algorithms exhibited favorable performance for the diagnosis of OC through medical imaging. More rigorous reporting standards that address specific challenges of AI research could improve future studies. Copyright (c) 2022 The Author(s). Published by Elsevier Ltd.
基金:
Natural Science Foundation of China [82073647, 82103914]; LiaoNing Revitalization Talents Program [XLYC1907102]; 345 Talent Project of Shengjing Hospital of China Medical University [M0268, M0952]
第一作者单位:[1]China Med Univ, Dept Clin Epidemiol, Shengjing Hosp, Shenyang, Peoples R China[2]China Med Univ, Clin Res Ctr, Shengjing Hosp, Shenyang, Peoples R China[3]China Med Univ, Key Lab Precis Med Res Major Chron Dis, Shengjing Hosp, Shenyang, Peoples R China
通讯作者:
通讯机构:[1]China Med Univ, Dept Clin Epidemiol, Shengjing Hosp, Shenyang, Peoples R China[2]China Med Univ, Clin Res Ctr, Shengjing Hosp, Shenyang, Peoples R China[3]China Med Univ, Key Lab Precis Med Res Major Chron Dis, Shengjing Hosp, Shenyang, Peoples R China[4]China Med Univ, Dept Obstet & Gynecol, Shengjing Hosp, Shenyang, Peoples R China[10]China Med Univ, Clin Res Ctr, Dept Clin Epidemiol, Dept Obstet & Gynecol,Shengjing Hosp, 36 San Hao St, Shenyang 110004, Liaoning, Peoples R China
推荐引用方式(GB/T 7714):
Xu He -Li,Gong Ting -Ting,Liu Fang-Hua,et al.Artificial intelligence performance in image-based ovarian cancer identification: A systematic review and meta-analysis[J].ECLINICALMEDICINE.2022,53:doi:10.1016/j.eclinm.2022.101662.
APA:
Xu, He -Li,Gong, Ting -Ting,Liu, Fang-Hua,Chen, Hong -Yu,Xiao, Qian...&Wu, Qi-Jun.(2022).Artificial intelligence performance in image-based ovarian cancer identification: A systematic review and meta-analysis.ECLINICALMEDICINE,53,
MLA:
Xu, He -Li,et al."Artificial intelligence performance in image-based ovarian cancer identification: A systematic review and meta-analysis".ECLINICALMEDICINE 53.(2022)