Artificial intelligence-based models enabling accurate diagnosis of ovarian cancer using laboratory tests in China: a multicentre, retrospective cohort study
单位:[1]Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.[2]School of Biomedical Engineering, Southern Medical University, Guangzhou, China.[3]Cancer Biology Research Centre (Key Laboratory of the Ministry of Education),Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan,China.肿瘤生物医学中心华中科技大学同济医学院附属同济医院[4]Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.浙江大学医学院附属妇产科医院[5]Cancer Biology Research Centre (Key Laboratory of the Ministry of Education),Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan,China.肿瘤生物医学中心华中科技大学同济医学院附属同济医院[6]School of Biomedical Engineering, Southern Medical University, Guangzhou, China.[7]Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
This study was supported by grants from the Ministry of Science and Technology of China (grant numbers 2022YFC2704200 and 2022YFC2704205), National Natural Science Foundation of China (grant numbers 82272698, 81972443, and 81874216); Natural Science Foundation of Guangdong Province, China (grant number 2022A1515011410); and Science and Technology Project of Guangzhou, China (grant number 202201011662).
语种:
外文
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类|1 区医学
小类|1 区医学:信息1 区医学:内科
最新[2025]版:
大类|1 区医学
小类|1 区医学:信息1 区医学:内科
JCR分区:
出版当年[2022]版:
Q1MEDICAL INFORMATICSQ1MEDICINE, GENERAL & INTERNAL
最新[2023]版:
Q1MEDICAL INFORMATICSQ1MEDICINE, GENERAL & INTERNAL
第一作者单位:[1]Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
Cai Guangyao,Huang Fangjun,Gao Yue,et al.Artificial intelligence-based models enabling accurate diagnosis of ovarian cancer using laboratory tests in China: a multicentre, retrospective cohort study[J].LANCET DIGITAL HEALTH.2024,6(3):e176-e186.doi:10.1016/S2589-7500(23)00245-5.
APA:
Cai Guangyao,Huang Fangjun,Gao Yue,Li Xiao,Chi Jianhua...&Liu Jihong.(2024).Artificial intelligence-based models enabling accurate diagnosis of ovarian cancer using laboratory tests in China: a multicentre, retrospective cohort study.LANCET DIGITAL HEALTH,6,(3)
MLA:
Cai Guangyao,et al."Artificial intelligence-based models enabling accurate diagnosis of ovarian cancer using laboratory tests in China: a multicentre, retrospective cohort study".LANCET DIGITAL HEALTH 6..3(2024):e176-e186