高级检索
当前位置: 首页 > 详情页

The value of S-Detect for the differential diagnosis of breast masses on ultrasound: a systematic review and pooled meta-analysis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Shihezi Univ, Affiliated Hosp 1, Dept Med Ultrasound, Med Coll, Shihezi, Peoples R China [2]Wuhan Univ Sci & Technol, Dept Med Ultrasound, Wuchang Hosp, Wuhan, Peoples R China [3]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Med Ultrasound, 1095 Jiefang Ave, Wuhan 430030, Hubei, Peoples R China [4]Univ South China, Dept Ultrasound, Peoples Hosp Huaihua 1, Huaihua, Peoples R China [5]Kliniken Hirslanden Beau Site, Dept Allgemeine Innere Med DAIM, Salem & Permancence, Bern, Switzerland
出处:
ISSN:

关键词: artificial intelligence ultrasonography diagnosis meta-analysis breast

摘要:
Aim: To evaluate the value of S-Detect (a computer aided diagnosis system using deep learning) in breast ultrasound (US) for discriminating benign and malignant breast masses. Material and methods: A literature search was performed and relevant studies using S-Detect for the differential diagnosis of breast masses were selected. The quality of included studies was assessed using a Quality Assessment of Diagnostic Accuracy Studies (QUADAS) questionnaire. Two review authors independently searched the articles and assessed the eligibility of the reports. Results: A total of ten studies were included in the meta-analysis. The pooled estimates of sensitivity and specificity were 0.82 (95%CI: 0.77-0.87) and 0.86 (95%CI: 0.76-0.92), respectively. In addition, the diagnostic odds ratios, positive likelihood ratio and negative likelihood ratio were 28 (95%CI: 1649), 5.7 (95%CI: 3.4-9.5), and 0.21 (95%CI: 0.16-0.27), respectively. Area under the curve was 0.89 (95%CI: 0.86-0.92). No significant publication bias was observed. Conclusions: S-Detect exhibited a favourable diagnostic value in assisting physicians discriminating benign and malignant breast masses and it can be considered as a useful complement for conventional US.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 4 区 医学
小类 | 4 区 声学 4 区 核医学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 声学 4 区 核医学
JCR分区:
出版当年[2018]版:
Q2 ACOUSTICS Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 ACOUSTICS Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Shihezi Univ, Affiliated Hosp 1, Dept Med Ultrasound, Med Coll, Shihezi, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)