高级检索
当前位置: 首页 > 详情页

DeepHBV: a deep learning model to predict hepatitis B virus (HBV) integration sites

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]South China Normal Univ, Inst Brain Res & Rehabil, Guangzhou 510631, Guangdong, Peoples R China [2]Sun Yat Sen Univ, Affiliated Hosp 1, Dept Med Oncol, Eastern Hosp, Guangzhou 510700, Guangdong, Peoples R China [3]Sun Yat Sen Univ, Affiliated Hosp 1, Dept Gynecol Oncol, Guangzhou 510080, Guangdong, Peoples R China [4]Sun Yat Sen Univ, Affiliated Hosp 1, Dept Thorac Surg, Guangzhou 510080, Guangdong, Peoples R China [5]South China Normal Univ, Sch Psychol, Guangzhou 510080, Guangdong, Peoples R China [6]Generulor Co Bio X Lab, Guangzhou 510006, Guangdong, Peoples R China [7]South China Normal Univ, Key Lab Brain Cognit & Educ Sci, Minist Educ, Guangzhou 510080, Guangdong, Peoples R China [8]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Obstet & Gynecol, Wuhan 430030, Hubei, Peoples R China [9]South China Normal Univ, Sch Comp Sci, Guangzhou 510631, Peoples R China
出处:
ISSN:

关键词: Deep learning HBV integration sites Genomic features Bioinformatics

摘要:
Background The hepatitis B virus (HBV) is one of the main causes of viral hepatitis and liver cancer. HBV integration is one of the key steps in the virus-promoted malignant transformation. Results An attention-based deep learning model, DeepHBV, was developed to predict HBV integration sites. By learning local genomic features automatically, DeepHBV was trained and tested using HBV integration site data from the dsVIS database. Initially, DeepHBV showed an AUROC of 0.6363 and an AUPR of 0.5471 for the dataset. The integration of genomic features of repeat peaks and TCGA Pan-Cancer peaks significantly improved model performance, with AUROCs of 0.8378 and 0.9430 and AUPRs of 0.7535 and 0.9310, respectively. The transcription factor binding sites (TFBS) were significantly enriched near the genomic positions that were considered. The binding sites of the AR-halfsite, Arnt, Atf1, bHLHE40, bHLHE41, BMAL1, CLOCK, c-Myc, COUP-TFII, E2A, EBF1, Erra, and Foxo3 were highlighted by DeepHBV in both the dsVIS and VISDB datasets, revealing a novel integration preference for HBV. Conclusions DeepHBV is a useful tool for predicting HBV integration sites, revealing novel insights into HBV integration-related carcinogenesis.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
最新[2025]版:
大类 | 3 区 环境科学与生态学
小类 | 3 区 生态学 3 区 遗传学 4 区 进化生物学
JCR分区:
出版当年[2019]版:
最新[2024]版:
Q2 ECOLOGY Q2 EVOLUTIONARY BIOLOGY Q2 GENETICS & HEREDITY

影响因子: 最新[2024版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版]

第一作者:
第一作者单位: [1]South China Normal Univ, Inst Brain Res & Rehabil, Guangzhou 510631, Guangdong, Peoples R China
通讯作者:
通讯机构: [1]South China Normal Univ, Inst Brain Res & Rehabil, Guangzhou 510631, Guangdong, Peoples R China [3]Sun Yat Sen Univ, Affiliated Hosp 1, Dept Gynecol Oncol, Guangzhou 510080, Guangdong, Peoples R China [7]South China Normal Univ, Key Lab Brain Cognit & Educ Sci, Minist Educ, Guangzhou 510080, Guangdong, Peoples R China [8]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Obstet & Gynecol, Wuhan 430030, Hubei, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)