高级检索
当前位置: 首页 > 详情页

DDeep3M: Docker-powered deep learning for biomedical image segmentation

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Wuhan Inst Technol, Sch Comp Sci & Engn, Wuhan 430205, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China [3]Wuhan Text Univ, Sch Math & Comp Sci, Wuhan 430200, Hubei, Peoples R China [4]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Med Ultrasound,Sino German Tongji Caritas Res Ctr Ultrasound Med,Wuhan 430030,Hubei,Peoples R China
出处:
ISSN:

关键词: Docker Deep learning Biomedical image Segmentation

摘要:
Background: Deep learning models are turning out to be increasingly popular in biomedical image processing. The fruitful utilization of these models, in most cases, is substantially restricted by the complicated configuration of computational environments, resulting in the noteworthy increment of the time and endeavors to reproduce the outcomes of the models. New method: We thus present a Docker-based method for better use of deep learning models and quicker reproduction of model performance for multiple data sources, permitting progressively more biomedical scientists to attempt the new technology conveniently in their domain. Here, we introduce a Docker-powered deep learning model, named as DDeep3M and validated it with the electron microscopy data volumes (microscale). Results: DDeep3M is utilized to the 3D optical microscopy image stack in mouse brain for the image segmentation (mesoscale). It achieves high accuracy on both vessels and somata structures with all the recall/precision scores and Dice indexes over 0.96. DDeep3M also reports the state-of-the-art performance in the MRI data (macroscale) for brain tumor segmentation. Comparison with existing methods: We compare the performance and efficiency of DDeep3M with three existing models on image datasets varying from micro- to macro-scales. Conclusion: DDeep3M is a friendly, convenient and efficient tool for image segmentations in biomedical Corresponding research. DDeep3M is open sourced with the codes and pretrained model weights available at https://github.com/cakuba/DDeep3m.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 3 区 医学
小类 | 3 区 生化研究方法 4 区 神经科学
最新[2025]版:
大类 | 4 区 医学
小类 | 3 区 生化研究方法 4 区 神经科学
JCR分区:
出版当年[2018]版:
Q2 BIOCHEMICAL RESEARCH METHODS Q3 NEUROSCIENCES
最新[2023]版:
Q2 BIOCHEMICAL RESEARCH METHODS Q3 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Wuhan Inst Technol, Sch Comp Sci & Engn, Wuhan 430205, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:420 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)