高级检索
当前位置: 首页 > 详情页

Thioredoxin Protects Fetal Type II Epithelial Cells From Hyperoxia-Induced Injury

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Pediat, Wuhan 430030, Hubei, Peoples R China
出处:
ISSN:

关键词: bronchopulmonary dysplasia mitogen-activated protein kinases phosphatidylinositol 3-kinase-Akt reactive oxygen species

摘要:
Oxygen toxicity is known to be one of the major contributors to bronchopulmonary dysplasia, a chronic lung disease in premature infants. Thioredoxin (Trx) is an antioxidant that prevents oxidative stress-induced cell death, suggesting a potential therapeutic role in bronchopulmonary dysplasia. The aim of this study was to determine the role of Trx in the pathogenesis of hyperoxia-induced alveolar epithelial cell injury. Alveolar type II epithelial cells from fetal rat lung were exposed to hyperoxia in vitro in the presence or absence of recombinant human Trx (rhTrx 2 mu g/ml). Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Apoptosis and levels of reactive oxygen species (ROS) were measured by flow cytometry. Activation of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathways were detected by Western blotting. We also investigated the effects of rhTrx on the following antioxidants (superoxide dismutase, catalase, and glutathione peroxidase). Trx significantly reduced hyperoxia-induced cell death and increased cell viability. In addition, ROS generation in type II cells was inhibited by rhTrx under hyperoxic conditions. We demonstrated that rhTrx protected type II cells against hyperoxic injury via sustaining the extracellular signal regulated kinase and PI3K activation, and decreasing of c-Jun N-terminal protein kinase and p38 activation. The results also showed manganese superoxide dismutase and glutathione peroxidase activities were increased by rhTrx in type II cells exposed to hyperoxia. Taken together, these results demonstrate that rhTrx administration markedly attenuates hyperoxia-induced type II cell injury through reduction of ROS generation, elevation of antioxidant activities and regulation of both MAPK and PI3K-Akt signaling pathways. Pediatr Pulmonol. 2010; 45:1192-1200. (C) 2010 Wiley-Liss, Inc.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2009]版:
大类 | 4 区 医学
小类 | 3 区 儿科 4 区 呼吸系统
最新[2025]版:
大类 | 4 区 医学
小类 | 3 区 儿科 4 区 呼吸系统
JCR分区:
出版当年[2008]版:
Q2 PEDIATRICS Q3 RESPIRATORY SYSTEM
最新[2024]版:
Q2 PEDIATRICS Q2 RESPIRATORY SYSTEM

影响因子: 最新[2024版] 最新五年平均 出版当年[2008版] 出版当年五年平均 出版前一年[2007版] 出版后一年[2009版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Pediat, Wuhan 430030, Hubei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)