高级检索
当前位置: 首页 > 详情页

Development and validation of a clinic machine-learning nomogram for the prediction of risk stratifications of prostate cancer based on functional subsets of peripheral lymphocyte

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Urology,Tongji Hospital of Tongji Medical College,Huazhong University of Science and Technology (HUST),Wuhan,People’s Republic of China [2]School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People’s Republic of China
出处:
ISSN:

关键词: Prostate cancer Risk stratifcation Machine learning Nomogram Peripheral lymphocyte

摘要:
Non-invasive risk stratification contributes to the precise treatment of prostate cancer (PCa). In previous studies, lymphocyte subsets were used to differentiate between low-/intermediate-risk and high-risk PCa, with limited clinical value and poor interpretability. Based on functional subsets of peripheral lymphocyte with the largest sample size to date, this study aims to construct an easy-to-use and robust nomogram to guide the tripartite risk stratifications for PCa.We retrospectively collected data from 2039 PCa and benign prostate disease (BPD) patients with 42 clinical characteristics on functional subsets of peripheral lymphocyte. After quality control and feature selection, clinical data with the optimal feature subset were utilized for the 10-fold cross-validation of five Machine Learning (ML) models for the task of predicting low-, intermediate- and high-risk stratification of PCa. Then, a novel clinic-ML nomogram was constructed using probabilistic predictions of the trained ML models via the combination of a multivariable Ordinal Logistic Regression analysis and the proposed feature mapping algorithm.197 PCa patients, including 56 BPD, were enrolled in the study. An optimal subset with nine clinical features was selected. Compared with the best ML model and the clinic nomogram, the clinic-ML nomogram achieved the superior performance with a sensitivity of 0.713 (95% CI 0.573-0.853), specificity of 0.869 (95% CI 0.764-0.974), F1 of 0.699 (95% CI 0.557-0.841), and AUC of 0.864 (95% CI 0.794-0.935). The calibration curve and Decision Curve Analysis (DCA) indicated the predictive capacity and net benefits of the clinic-ML nomogram were improved.Combining the interpretability and simplicity of a nomogram with the efficacy and robustness of ML models, the proposed clinic-ML nomogram can serve as an insight tool for preoperative assessment of PCa risk stratifications, and could provide essential information for the individual diagnosis and treatment in PCa patients.© 2023. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 医学:研究与实验
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 医学:研究与实验
JCR分区:
出版当年[2021]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2024]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2024版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Department of Urology,Tongji Hospital of Tongji Medical College,Huazhong University of Science and Technology (HUST),Wuhan,People’s Republic of China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)