高级检索
当前位置: 首页 > 详情页

circRIP: an accurate tool for identifying circRNA-RBP interactions

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Wuhan Univ, Sch Basic Med Sci, Hubei Prov Key Lab Allergy & Immunol, Wuhan, Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Urol,Wuhan,Peoples R China [3]Wuhan Univ, Sch Basic Med Sci, Wuhan 430071, Peoples R China [4]Huazhong Agr Univ, Coll Biomed & Hlth, Wuhan 430070, Peoples R China [5]Texas A&M Univ, Ctr Epigenet & Dis Prevent, Inst Biosci & Technol, Houston, TX 77030 USA [6]Guizhou Univ Tradit Chinese Med, Coll Basic Med, Guizhou Educ Dept, Key Lab Tradit Chinese Med Toxicol Forens Med, Guiyang, Guizhou, Peoples R China
出处:
ISSN:

关键词: circRNA RNA-binding protein RIP-Seq eCLIP

摘要:
Circular ribonucleic acids (RNAs) (circRNAs) are formed by covalently linking the downstream splice donor and the upstream splice acceptor. One of the most important functions of circRNAs is mainly exerted through binding RNA-binding proteins (RBPs). However, there is no efficient algorithm for identifying genome-wide circRNA-RBP interactions. Here, we developed a unique algorithm, circRIP, for identifying circRNA-RBP interactions from RNA immunoprecipitation sequencing (RIP-Seq) data. A simulation test demonstrated the sensitivity and specificity of circRIP. By applying circRIP, we identified 95 IGF2BP3-binding circRNAs based on the IGF2BP3 RIP-Seq dataset. We further identified 2823 and 1333 circRNAs binding to >100 RBPs in K562 and HepG2 cell lines, respectively, based on enhanced cross-linking immunoprecipitation (eCLIP) data, demonstrating the significance to survey the potential interactions between circRNAs and RBPs. In this study, we provide an accurate and sensitive tool, circRIP (), to systematically identify RBP and circRNA interactions from RIP-Seq and eCLIP data, which can significantly benefit the research community for the functional exploration of circRNAs.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版
大类 | 2 区 生物学
小类 | 2 区 生化研究方法 2 区 数学与计算生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 1 区 数学与计算生物学 2 区 生化研究方法
JCR分区:
出版当年[2020]版:
Q1 BIOCHEMICAL RESEARCH METHODS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2024]版:
Q1 BIOCHEMICAL RESEARCH METHODS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Wuhan Univ, Sch Basic Med Sci, Hubei Prov Key Lab Allergy & Immunol, Wuhan, Peoples R China
通讯作者:
通讯机构: [3]Wuhan Univ, Sch Basic Med Sci, Wuhan 430071, Peoples R China [4]Huazhong Agr Univ, Coll Biomed & Hlth, Wuhan 430070, Peoples R China [6]Guizhou Univ Tradit Chinese Med, Coll Basic Med, Guizhou Educ Dept, Key Lab Tradit Chinese Med Toxicol Forens Med, Guiyang, Guizhou, Peoples R China [*1]Huazhong Agr Univ, Coll Biomed & Hlth, Hubei Hongshan Lab, Wuhan 430070, Peoples R China [*2]Guizhou Univ Tradit Chinese Med, Coll Basic Med, Guiyang 550025, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)