高级检索
当前位置: 首页 > 详情页

Hard Thresholding Regularised Logistic Regression: Theory and Algorithms

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Anesthesiol, Wuhan 430030, Peoples R China
出处:
ISSN:

关键词: Sparse logistic regression hard thresholding regularisation PDAS SPDAS

摘要:
The hard thresholding regularised logistic regression in high dimensions with larger number of features than samples is considered. The sharp oracle inequality for the global solution is established. If the target signal is detectable, it is proven that with a high probability the estimated and true supports coincide. Starting with the KKT condition, we introduce the primal and dual active sets algorithm for fitting and also consider a sequential version of this algorithm with a warm-start strategy. Simulations and a real data analysis show that SPDAS outperforms LASSO, MCP and SCAD methods in terms of computational efficiency, estimation accuracy, support recovery and classification.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 4 区 数学
小类 | 4 区 应用数学
最新[2025]版:
大类 | 4 区 数学
小类 | 4 区 应用数学
JCR分区:
出版当年[2020]版:
Q2 MATHEMATICS, APPLIED
最新[2023]版:
Q2 MATHEMATICS, APPLIED

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:420 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)