高级检索
当前位置: 首页 > 详情页

Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp & Med Coll, Dept Radiol, Wuhan, Peoples R China [2]Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan, Peoples R China [3]Univ Cambridge, Dept Engn, Cambridge, England [4]Huazhong Univ Sci & Technol, Union Hosp, Dept Radiol, Tongji Med Coll, Wuhan, Peoples R China [5]HUST HW Joint Innovat Lab, Wuhan, Peoples R China [6]CalmCar Inc, Suzhou, Peoples R China [7]Wuhan Blood Ctr, Wuhan, Peoples R China [8]MSA Capital, Beijing, Peoples R China [9]Chinese Acad Sci, Shanghai Inst Mat Med, Natl Ctr Drug Screening, Shanghai, Peoples R China [10]Tufts Univ, Sch Med, CardioVasc & Intervent Radiol,Radiol, Radiol Qual & Operat,Cardiovasc Ctr,Tufts Med Ctr, Medford, OR USA [11]Johns Hopkins Hosp & Med Inst, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD USA [12]Stanford Univ, Sch Med, Dept Radiat Oncol, Palo Alto, CA 94304 USA [13]Wuhan Cent Hosp, Dept Radiol, Wuhan, Peoples R China [14]Wuhan Childrens Hosp, Dept Radiol, Wuhan, Peoples R China [15]Mahidol Univ, Fac Informat & Commun Technol, Salaya, Nakhon Pathom, Thailand [16]Univ Texas MD Anderson Canc Ctr, Thorac Head & Neck Med Oncol, Houston, TX 77030 USA [17]Univ Texas MD Anderson Canc Ctr, Translat Mol Pathol, Houston, TX 77030 USA [18]Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England [19]AstraZeneca, Oncol R&D, Cambridge, England [20]Univ Cambridge, Dept Radiol, Cambridge, England [21]Stanford Univ, Dept Biomed Data Sci Radiol & Med, Palo Alto, CA 94304 USA [22]Alan Turing Inst, London, England [23]Wuhan Univ Sci & Technol, Dept Hepatobiliary Pancreat Surg, Affiliated Tianyou Hosp, Wuhan, Peoples R China
出处:
ISSN:

摘要:
Artificial intelligence provides a promising solution for streamlining COVID-19 diagnoses; however, concerns surrounding security and trustworthiness impede the collection of large-scale representative medical data, posing a considerable challenge for training a well-generalized model in clinical practices. To address this, we launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the artificial intelligence (AI) model can be distributedly trained and independently executed at each host institution under a federated learning framework without data sharing. Here we show that our federated learning framework model considerably outperformed all of the local models (with a test sensitivity/specificity of 0.973/0.951 in China and 0.730/0.942 in the United Kingdom), achieving comparable performance with a panel of professional radiologists. We further evaluated the model on the hold-out (collected from another two hospitals without the federated learning framework) and heterogeneous (acquired with contrast materials) data, provided visual explanations for decisions made by the model, and analysed the trade-offs between the model performance and the communication costs in the federated training process. Our study is based on 9,573 chest computed tomography scans from 3,336 patients collected from 23 hospitals located in China and the United Kingdom. Collectively, our work advanced the prospects of utilizing federated learning for privacy-preserving AI in digital health. The COVID-19 pandemic sparked the need for international collaboration in using clinical data for rapid development of diagnosis and treatment methods. But the sensitive nature of medical data requires special care and ideally potentially sensitive data would not leave the organization which collected it. Xiang Bai and colleagues present a privacy-preserving AI framework for CT-based COVID-19 diagnosis and demonstrate it on data from 23 hospitals in China and the United Kingdom.

基金:

基金编号: 2020kfyXGYJ021 2020kfyXGYJ031 2020kfyXGYJ093 2020kfyXGYJ094 61703171 81771801 U01CA242879 25/2561 EP/V025379/1 EP/S026045/1 EP/T003553/1 EP/N014588/1 EP/T017961 RG98755 777826 NoMADS

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
最新[2025]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:人工智能 1 区 计算机:跨学科应用
JCR分区:
出版当年[2019]版:
最新[2024]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS

影响因子: 最新[2024版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp & Med Coll, Dept Radiol, Wuhan, Peoples R China [2]Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol, Tongji Hosp & Med Coll, Dept Radiol, Wuhan, Peoples R China [2]Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan, Peoples R China [18]Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England [22]Alan Turing Inst, London, England
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)