高级检索
当前位置: 首页 > 详情页

Tryptophan metabolism induced by TDO2 promotes prostatic cancer chemotherapy resistance in a AhR/c-Myc dependent manner

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Urol,Wuhan,Peoples R China
出处:
ISSN:

关键词: Tryptophan metabolism Kynurenine AhR C-Myc Prostatic cancer

摘要:
Background: Tumor cells exhibit enhanced metabolism of nutrients to satisfy the demand of sustained proliferation in vivo. Seminal reports have presented evidence that tryptophan (Trp) metabolic reprogramming induced by aberrant indoleamine 2,3-dioxygenases could promote tumor development in several cancer types. However, the underlying mechanism of Trp metabolism associated tumor progression is not fully understood. Materials and methods: Prostatic cell lines LNCaP and VCaP were purchased from the Cell Bank of the Chinese Academy of Sciences (China). Human prostatic tumor tissue samples were obtained from the Tongji Hospital. Female NOD-SCID mice (6 similar to 8 weeks) were purchased from Huafukang Co. (China) and raised in SPF room. Commercial kits and instruments were used for cell apoptosis analysis, real-time PCR, western blotting, ELISA analysis and other experiments. Result: Comparing the tumor tissues from prostatic cancer patients, we found elevated expression of tryptophan 2, 3-dioxygenase 2 (TDO2), and elevated Trp metabolism in chemo-resistant tumor tissues. In vitro, overexpression of TDO2 significantly promoted the Trp metabolism in prostatic cancer cell lines LNCaP and VCap, resulting in the multidrug resistance development. Mechanistically, we demonstrated that Trp metabolite kynurenine (Kyn) promoted the upregulation and nuclear translocation of transcription factor aryl hydrocarbon receptor (AhR). Subsequently, AhR collaborated with NF-kappa B to facilitate the activation of c-Myc. In turn, c-Myc promoted the up-regulation of ATP-binding cassette (ABC) transporters and Trp transporters, thereby contributing to chemoresistance and strengthened Trp metabolism in prostatic cancer. Interrupt of Trp/TDO2/Kyn/AhR/c-Myc loop with c-Myc inhibitor Mycro-3 efficiently suppressed the chemoresistance and improved the outcome of chemotherapy, which described a new strategy in clinical prostatic cancer treatment. Conclusion: Our study demonstrates that elevated TOD2 expression promoted Trp metabolism and metabolite Kyn production, thus resulting in the activation of AhR/c-Myc/ABC-SLC transporters signaling pathway. Interrupt of Trp metabolism/c-Myc loop efficiently suppressed the drugs resistance induced by TDO2, which represented potential target to improve the outcome in drug-resistant prostatic cancer treatment.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
JCR分区:
出版当年[2019]版:
Q3 ONCOLOGY
最新[2024]版:
Q2 ONCOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Urol,Wuhan,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)