高级检索
当前位置: 首页 > 详情页

Integrated Learning: Screening Optimal Biomarkers for Identifying Preeclampsia in Placental mRNA Samples

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Northeast Forestry Univ, Informat & Comp Engn Coll, Harbin 150040, Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Gynecol & Obstet,Tongji Med Coll,Wuhan,Hubei,Peoples R China
出处:
ISSN:

摘要:
Preeclampsia (PE) is a maternal disease that causes maternal and child death. Treatment and preventive measures are not sound enough. The problem of PE screening has attracted much attention. The purpose of this study is to screen placental mRNA to obtain the best PE biomarkers for identifying patients with PE. We use Limma in the R language to screen out the 48 differentially expressed genes with the largest differences and used correlation-based feature selection algorithms to reduce the dimensionality and avoid attribute redundancy arising from too many mRNA samples participating in the classification. After reducing the mRNA attributes, the mRNA samples are sorted from large to small according to information gain. In this study, a classifier model is designed to identify whether samples had PE through mRNA in the placenta. To improve the accuracy of classification and avoid overfitting, three classifiers, including C4.5, AdaBoost, and multilayer perceptron, are used. We use the majority voting strategy integrated with the differentially expressed genes and the genes filtered by the best subset method as comparison methods to train the classifier. The results show that the classification accuracy rate has increased from 79% to 82.2%, and the number of mRNA features has decreased from 48 to 13. This study provides clues for the main PE biomarkers of mRNA in the placenta and provides ideas for the treatment and screening of PE.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 工程技术
小类 | 4 区 数学与计算生物学
最新[2025]版:
JCR分区:
出版当年[2019]版:
Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2024]版:

影响因子: 最新[2024版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Northeast Forestry Univ, Informat & Comp Engn Coll, Harbin 150040, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)