高级检索
当前位置: 首页 > 详情页

Machine learning-assisted decision-support models to better predict patients with calculous pyonephrosis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Urol,Tongji Med Coll,Wuhan 430030,Hubei,Peoples R China
出处:
ISSN:

关键词: Calculous pyonephrosis hydronephrosis machine learning (ML)

摘要:
Background: To develop a machine learning (ML)-assisted model capable of accurately identifying patients with calculous pyonephrosis before making treatment decisions by integrating multiple clinical characteristics. Methods: We retrospectively collected data from patients with obstructed hydronephrosis who underwent retrograde ureteral stent insertion, percutaneous nephrostomy (PCN), or percutaneous nephrolithotomy (PCNL). The study cohort was divided into training and testing datasets in a 70:30 ratio for further analysis. We developed 5 ML-assisted models from 22 clinical features using logistic regression (LR), LR optimized by least absolute shrinkage and selection operator (Lasso) regularization (Lasso-LR), support vector machine (SVM), extreme gradient boosting (XGBoost), and random forest (RF). The area under the curve (AUC) was applied to determine the model with the highest discrimination. Decision curve analysis (DCA) was used to investigate the clinical net benefit associated with using the predictive models. Results: A total of 322 patients were included, with 225 patients in the training dataset, and 97 patients in the testing dataset. The XGBoost model showed good discrimination with the AUC, accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 0.981, 0.991, 0.962, 1.000, 1.000, and 0.989, respectively, followed by SVM [AUC=0.985, 95% confidence interval (CI): 0.970-1.000], Lasso-LR (AUC=0.977, 95% CI: 0.958-0.996), LR (AUC=0.936, 95% CI: 0.905-0.968), and RF (AUC=0.920, 95% CI: 0.870-0.970). Validation of the model showed that SVM yielded the highest AUC (0.977, 95% CI: 0.952-1.000), followed by Lasso-LR (AUC=0.959, 95% CI: 0.921-0.997), XGBoost (AUC=0.958, 95% CI: 0.902-1.000), LR (AUC=0.932, 95% CI: 0.878-0.987), and RF (AUC=0.868, 95% CI: 0.779-0.958) in the testing dataset. Conclusions: Our ML-based models had good discrimination in predicting patients with obstructed hydronephrosis at high risk of harboring pyonephrosis, and the use of these models may be greatly beneficial to urologists in treatment planning, patient selection, and decision-making.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 3 区 男科学 3 区 泌尿学与肾脏学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 男科学 4 区 泌尿学与肾脏学
JCR分区:
出版当年[2019]版:
Q2 UROLOGY & NEPHROLOGY Q3 ANDROLOGY
最新[2023]版:
Q3 UROLOGY & NEPHROLOGY Q4 ANDROLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Urol,Tongji Med Coll,Wuhan 430030,Hubei,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)