高级检索
当前位置: 首页 > 详情页

Minutes-timescale 3D isotropic imaging of entire organs at subcellular resolution by content-aware compressed-sensing light-sheet microscopy

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 自然指数

单位: [1]Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China [2]Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China [3]Huazhong Univ Sci & Technol, MoE Key Lab Biomed Photon, Wuhan 430074, Peoples R China [4]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Anesthesiol, Wuhan 430030, Peoples R China
出处:
ISSN:

摘要:
Rapid 3D imaging of entire organs and organisms at cellular resolution is a recurring challenge in life science. Here we report on a computational light-sheet microscopy able to achieve minute-timescale high-resolution mapping of entire macro-scale organs. Through combining a dual-side confocally-scanned Bessel light-sheet illumination which provides thinner-and-wider optical sectioning of deep tissues, with a content-aware compressed sensing (CACS) computation pipeline which further improves the contrast and resolution based on a single acquisition, our approach yields 3D images with high, isotropic spatial resolution and rapid acquisition over two-order-of-magnitude faster than conventional 3D microscopy implementations. We demonstrate the imaging of whole brain (similar to 400mm(3)), entire gastrocnemius and tibialis muscles (similar to 200mm(3)) of mouse at ultra-high throughput of 5 similar to 10min per sample and post-improved subcellular resolution of similar to 1.5 mu m (0.5-mu m iso-voxel size). Various system-level cellular analyses, such as mapping cell populations at different brain sub-regions, tracing long-distance projection neurons over the entire brain, and calculating neuromuscular junction occupancy across whole muscle, are also readily accomplished by our method.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
最新[2025]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
JCR分区:
出版当年[2019]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2024]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2024版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
通讯作者:
通讯机构: [2]Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China [3]Huazhong Univ Sci & Technol, MoE Key Lab Biomed Photon, Wuhan 430074, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)