高级检索
当前位置: 首页 > 详情页

Modular DNA-Incorporated Aggregation-Induced Emission Probe for Sensitive Detection and Imaging of DNA Methyltransferase

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ EI ◇ ESCI

单位: [1]China Univ Geosci, Fac Mat Sci & Chem, Minist Educ, Wuhan 430078, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Obstet & Gynecol, Wuhan 430030, Peoples R China
出处:
ISSN:

关键词: DNA methyltransferase modular DNA-incorporated probe AIEgen real-time visualization tissue diagnosis

摘要:
DNA adenine methylation (Dam) MTase serves a very important epigenetic process that transfers a methyl group on an adenine residue including N-6-methyladenosine (m(6)A). A variety of evidence have demonstrated that m(6)A methylation plays a significant role in modulating genes in human disease and development. Hence, a modular DNA-incorporated AIEgen probe (TPE-Py-DNA) was specifically developed for detection and imaging of Dam MTase. TPE-Py-DNA consisted of two modules: a "turn-on" fluorescent AIEgen (TPE-Py) and a DNA sequence (Alk-DNA) involved in specific recognition of the targeted strand. The TPE-Py-DNA probe was dispersed and almost nonfluorescent in an aqueous environment. On the contrary, the TPE-Py-DNA molecule was digested based on the target-recycling strategy in assistance with exonuclease III (Exo III) when Dam MTase was presented, finally releasing aggregated AIEgens to produce a remarkably increased fluorescence signal. Therefore, the detection limit toward Dam MTase was as low as 3.1 x 10(-5) U mL(-1), and the fluorescent signal could be used to detect Dam MTase activities in real samples and screen its inhibitors. More importantly, the Dam MTase expression was visualized in E. coli cells via CLMS imaging and confirmed in E. coli cell-bearing tissues. In this vein, our results demonstrated that the TPE-Py-DNA probe is a potent tool for the Dam MTase detection and imaging as well as offers an efficient biosensing platform for further investigation of disease pathway and carcinogenesis.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
最新[2025]版:
大类 | 3 区 材料科学
小类 | 4 区 材料科学:生物材料 4 区 纳米科技
JCR分区:
出版当年[2018]版:
最新[2023]版:
Q2 MATERIALS SCIENCE, BIOMATERIALS Q2 NANOSCIENCE & NANOTECHNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版]

第一作者:
第一作者单位: [1]China Univ Geosci, Fac Mat Sci & Chem, Minist Educ, Wuhan 430078, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)