高级检索
当前位置: 首页 > 详情页

Multifactorial Deep Learning Reveals Pan-Cancer Genomic Tumor Clusters with Distinct Immunogenomic Landscape and Response to Immunotherapy

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Inst Pathol,Tongji Hosp,Tongji Med Coll,Wuhan,Peoples R China [2]Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan, Peoples R China [3]Univ Texas MD Anderson Canc Ctr, Thorac Head & Neck Med Oncol, Houston, TX 77030 USA [4]Univ Texas MD Anderson Canc Ctr, Dept Genom Med, Houston, TX 77030 USA [5]Xi An Jiao Tong Univ, Sch Comp Sci & Technol, Xian, Shaanxi, Peoples R China [6]Geneplus Beijing, Beijing, Peoples R China [7]Geisel Sch Med Dartmouth, Dept Mol & Syst Biol, Hanover, NH USA [8]Sun Yat Sen Univ, State Key Lab Oncol Southern China, Canc Ctr, Guangzhou, Peoples R China [9]Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Canc Ctr, Wuhan, Peoples R China [10]Huazhong Univ Sci & Technol, Sch Basic Med, Tongji Med Coll, Dept Pathol, Wuhan, Peoples R China [11]Methodist Hosp Res Inst, Genom Med, Houston, TX USA [12]Univ Texas MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX 77030 USA [13]Univ Texas MD Anderson Canc Ctr, Translat Mol Pathol, Houston, TX 77030 USA [14]Xi An Jiao Tong Univ, MOE Key Lab Intelligent Network Network Secur, Xian, Peoples R China [15]Xi An Jiao Tong Univ, Affiliated Hosp 1, Xian 710049, Peoples R China [16]Baylor Coll Med, Dept Med, Houston, TX 77030 USA [17]Geisel Sch Med Dartmouth, Dept Biomed Data Sci, Hanover, NH USA
出处:
ISSN:

摘要:
Purpose: Tumor genomic features have been of particular interest because of their potential impact on the tumor immune micro-environment and response to immunotherapy. Due to the substantial heterogeneity, an integrative approach incorporating diverse molecular features is needed to characterize immunologic features underlying primary resistance to immunotherapy and for the establishment of novel predictive biomarkers. Experimental Design: We developed a pan-cancer deep machine learning model integrating tumor mutation burden, microsatellite instability, and somatic copy-number alterations to classify tumors of different types into different genomic clusters, and assessed the immune microenvironment in each genomic cluster and the association of each genomic cluster with response to immunotherapy. Results: Our model grouped 8,646 tumors of 29 cancer types from The Cancer Genome Atlas into four genomic clusters. Analysis of RNA-sequencing data revealed distinct immune microenvironment in tumors of each genomic class. Furthermore, applying this model to tumors from two melanoma immunotherapy clinical cohorts demonstrated that patients with melanoma of different genomic classes achieved different benefit from immunotherapy. Interestingly, tumors in cluster 4 demonstrated a cold immune microenvironment and lack of benefit from immunotherapy despite high microsatellite instability burden. Conclusions: Our study provides a proof for principle that deep learning modeling may have the potential to discover intrinsic statistical cross-modality correlations of multifactorial input data to dissect the molecular mechanisms underlying primary resistance to immunotherapy, which likely involves multiple factors from both the tumor and host at different molecular levels.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 1 区 医学
小类 | 1 区 肿瘤学
最新[2025]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
JCR分区:
出版当年[2018]版:
Q1 ONCOLOGY
最新[2023]版:
Q1 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Inst Pathol,Tongji Hosp,Tongji Med Coll,Wuhan,Peoples R China [2]Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan, Peoples R China
通讯作者:
通讯机构: [3]Univ Texas MD Anderson Canc Ctr, Thorac Head & Neck Med Oncol, Houston, TX 77030 USA [4]Univ Texas MD Anderson Canc Ctr, Dept Genom Med, Houston, TX 77030 USA [10]Huazhong Univ Sci & Technol, Sch Basic Med, Tongji Med Coll, Dept Pathol, Wuhan, Peoples R China [12]Univ Texas MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX 77030 USA [14]Xi An Jiao Tong Univ, MOE Key Lab Intelligent Network Network Secur, Xian, Peoples R China [15]Xi An Jiao Tong Univ, Affiliated Hosp 1, Xian 710049, Peoples R China [16]Baylor Coll Med, Dept Med, Houston, TX 77030 USA [17]Geisel Sch Med Dartmouth, Dept Biomed Data Sci, Hanover, NH USA [*1]Univ Texas MD Anderson Canc Ctr, Unit 432,1515 Holcombe Blvd, Houston, TX 77030 USA [*2]One Baylor Plaza,Room ICTR 100D, Houston, TX 77030 USA [*3]Luoyu Rd 1037, Wuhan 430074, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)