高级检索
当前位置: 首页 > 详情页

A Ni-free ZrCuFeAlAg bulk metallic glass with potential for biomedical applications

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Wuhan 430030, Peoples R China
出处:
ISSN:

关键词: Zr-based metallic glass Toughness Fatigue Biocorrosion resistance Metal ion release

摘要:
The mechanical properties and biocompatibility of an Ni-free Zr-based bulk metallic glass (BMG) Zr60.14Cu22.31Fe4.85Al9.7Ag3 were investigated in detail to evaluate its potential as a biomaterial. The BMG was found to have a low Young's modulus of 82 +/- 1.9 GPa, a high strength of 1720 +/- 28 MPa and a high fracture toughness of 94 +/- 19 MPa m(1/2), as well as good fatigue strength over 400 MPa. The corrosion behavior of the alloy was investigated in simulated body fluid (SBF) by electrochemical measurements, which indicates that the Zr-based BMG has a better corrosion resistance than pure Zr and Ti6Al4V. X-ray photoelectron spectroscopy analysis revealed that the passive film formed on the BMG surface is enriched in Al- and Zr-oxides, which could account for the good corrosion resistance of the BMG. On the other hand, metal ion release of the BMG in SBF was determined by inductively coupled plasma mass spectrometry after the BMG was immersed in SBF at 37 degrees C for 30 days, showing a ppb (ng ml(-1)) level of metal ion release. The in vitro test via cell culture indicates that the BMG exhibits a cytotoxicity of Grade 0-1, which is as good as Ti6Al4V alloy. Cell adhesion morphological analysis shows that the cells were flattened and well spread out on the surfaces of the BMG, showing that the BMG had good biocompatibility. The combination of good mechanical properties and biocompatibility demonstrates that the Ni-free Zr-based BMG studied in this work is a good candidate for a new type of load-bearing biomedical material. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2012]版:
大类 | 1 区 工程技术
小类 | 1 区 工程:生物医学 2 区 材料科学:生物材料
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 工程:生物医学 1 区 材料科学:生物材料
JCR分区:
出版当年[2011]版:
Q1 ENGINEERING, BIOMEDICAL Q1 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2011版] 出版当年五年平均 出版前一年[2010版] 出版后一年[2012版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:420 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)