高级检索
当前位置: 首页 > 详情页

Predicting Drug Responsiveness in Human Cancers Using Genetically Engineered Mice

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA [2]Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA [3]Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA [4]Univ N Carolina, Dept Med, Div Hematol & Oncol, Chapel Hill, NC 27599 USA [5]Univ N Carolina, Sch Pharm, Chapel Hill, NC 27599 USA [6]Huazhong Univ Sci & Technol, Tongji Hosp, Dept Gastroenterol, Wuhan 430074, Peoples R China [7]VHIO, Translat Genom Grp, Barcelona, Spain [8]Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX 77030 USA
出处:
ISSN:

摘要:
Purpose: To use genetically engineered mouse models (GEMM) and orthotopic syngeneic murine transplants (OST) to develop gene expression-based predictors of response to anticancer drugs in human tumors. These mouse models offer advantages including precise genetics and an intact microenvironment/immune system. Experimental Design: We examined the efficacy of 4 chemotherapeutic or targeted anticancer drugs, alone and in combination, using mouse models representing 3 distinct breast cancer subtypes: Basal-like (C3(1)-T-antigen GEMM), Luminal B (MMTV-Neu GEMM), and Claudin-low (T11/TP53(-/-) OST). We expression-profiled tumors to develop signatures that corresponded to treatment and response, and then tested their predictive potential using human patient data. Results: Although a single agent exhibited exceptional efficacy (i.e., lapatinib in the Neu-driven model), generally single-agent activity was modest, whereas some combination therapies were more active and life prolonging. Through analysis of RNA expression in this large set of chemotherapy-treated murine tumors, we identified a pair of gene expression signatures that predicted pathologic complete response to neoadjuvant anthracycline/taxane therapy in human patients with breast cancer. Conclusions: These results show that murine-derived gene signatures can predict response even after accounting for common clinical variables and other predictive genomic signatures, suggesting that mice can be used to identify new biomarkers for human patients with cancer. (C) 2013 AACR.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2012]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
最新[2025]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
JCR分区:
出版当年[2011]版:
Q1 ONCOLOGY
最新[2023]版:
Q1 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2011版] 出版当年五年平均 出版前一年[2010版] 出版后一年[2012版]

第一作者:
第一作者单位: [1]Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA [2]Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA [3]Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA
通讯作者:
通讯机构: [1]Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA [2]Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA [3]Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA [*1]Univ N Carolina, Lineberger Comprehens Canc Ctr, 450 West Dr,CB7295, Chapel Hill, NC 27599 USA
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)