高级检索
当前位置: 首页 > 详情页

Combination treatment with ethyl pyruvate and IGF-I exerts neuroprotective effects against brain injury in a rat model of neonatal hypoxic-ischemic encephalopathy

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Dept Pediat, Tongji Med Coll, Wuhan 430030, Hubei, Peoples R China [2]Indiana Univ Sch Med, Dept Pediat, Indianapolis, IN 46202 USA
出处:
ISSN:

关键词: hypoxic-ischemic encephalopathy oxygen glucose deprivation ethyl pyruvate insulin-like growth factor-I antioxidants

摘要:
Neonatal hypoxic-ischemic (HI) brain injury causes severe brain damage in newborns. Following HI injury, rapidly accumulating oxidants injure neurons and interrupt ongoing developmental processes. The antioxidant, sodium pyruvate, has been shown to reduce neuronal injury in neonatal rats under conditions of oxygen glucose deprivation (OGD) and HI injury. In this study, we evaluated the effects of ethyl pyruvate (EP) and insulin-like growth factor-I (IGF-I) alone or in combination in a similar setting. For this purpose, we used an in vitro model involving primary neonatal rat cortical neurons subjected to OGD for 2.5 h and an in vivo model involving unilateral carotid ligation in rats on post-natal day 7 with exposure to 8% hypoxia for 2.5 h. The cultured neurons were examined by lactate dehydrogenase (LDH) and cell viability assays. For the in vivo experiments, behavioral development was evaluated by the foot fault test at 4 weeks of recovery. 2,3,5-Triphenyltetrazolium chloride monohydrate and cresyl violet staining were used to evaluate HI injury. The injured neurons were Fluoro-Jade B-labeled, new neuroprecursors were double labeled with bromodeoxyuridine (BrdU) and doublecortin, new mature neurons were BrdU-labeled and neuronal nuclei were labeled by immunofluorescence. Under conditions of OGD, the LDH levels increased and neuronal viability decreased. Treatment with 0.5 mM EP or 25 ng/ml IGF-I protected the neurons (P<0.05), exerting additive effects. Similarly, either the early administration of EP or delayed treatment with IGF-I protected the neonatal rat brains against HI injury and improved neurological performance and these effects were also additive. This effect may be the result of reduced neuronal injury, and enhanced neurogenesis and maturation. On the whole, our findings demonstrate that the combination of the early administration of EP with delayed treatment with IGF-I exerts neuroprotective effects against HI injury in neonatal rat brains.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2014]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 医学:研究与实验
JCR分区:
出版当年[2013]版:
Q3 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2013版] 出版当年五年平均 出版前一年[2012版] 出版后一年[2014版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Dept Pediat, Tongji Med Coll, Wuhan 430030, Hubei, Peoples R China
通讯作者:
通讯机构: [2]Indiana Univ Sch Med, Dept Pediat, Indianapolis, IN 46202 USA [*1]Indiana Univ Sch Med, Dept Pediat, Neurosci Res Bldg,320 West 15th St,NB 514F, Indianapolis, IN 46202 USA
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:420 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)