Beat-to-beat alternations in the amplitude of the cytosolic Ca2+ transient (Ca2+ alternans) are thought to be the primary cause of cardiac alternans that can lead to cardiac arrhythmias and sudden death. Despite its important role in arrhythmogenesis, the mechanism underlying Ca2+ alternans remains poorly understood. Here, we investigated the role of cardiac ryanodine receptor (RyR2), the major Ca2+ release channel responsible for cytosolic Ca2+ transients, in cardiac alternans. Using a unique mouse model harboring a suppression- of-function (SOF) RyR2 mutation (E4872Q), we assessed the effect of genetically suppressing RyR2 function on Ca2+ and action potential duration (APD) alternans in intact hearts, and electrocardiogram (ECG) alternans in vivo. We found that RyR2-SOF hearts displayed prolonged sarcoplasmic reticulum Ca2+ release refractoriness and enhanced propensity for Ca2+ alternans. RyR2-SOF hearts/mice also exhibited increased propensity for APD and ECG alternans. Caffeine, which enhances RyR2 activity and the propensity for catecholaminergic polymorphic ventricular tachycardia (CPVT), suppressed Ca2+ alternans in RyR2-SOF hearts, whereas carvedilol, a beta-blocker that suppresses RyR2 activity and CPVT, promoted Ca2+ alternans in these hearts. Thus, RyR2 function is an important determinant of Ca2+, APD, and ECG alternans. Our data also indicate that the activity of RyR2 influences the propensity for cardiac alternans and CPVT in an opposite manner. Therefore, overly suppressing or enhancing RyR2 function is pro-arrhythmic.
基金:
Canadian Institutes of Health Research; Heart and Stroke Foundation of Alberta; Heart and Stroke Foundation of Northwest Territories; Heart and Stroke Foundation of Nunavut; Canada Foundation for Innovation (CFI); Heart and Stroke Foundation/Libin Professorship in Cardiovascular Research; Alberta Innovates Health Solutions; Spanish Ministry of Economy and Competitiveness (MINECO) [DPI2013-44584-R, SAF2014-58286-C2-1R]; Generalitat de Catalunya [SGR2014-1465]; NHLBI [HL090905]; Alberta Innovates [201500221, 201001238, 201300501] Funding Source: researchfish
第一作者单位:[1]Univ Calgary, Dept Physiol & Pharmacol, Libin Cardiovasc Inst Alberta, 3330 Hosp Dr NW, Calgary, AB T2N 4N1, Canada
通讯作者:
推荐引用方式(GB/T 7714):
Zhong Xiaowei,Sun Bo,Vallmitjana Alexander,et al.Suppression of ryanodine receptor function prolongs Ca2+ release refractoriness and promotes cardiac alternans in intact hearts[J].BIOCHEMICAL JOURNAL.2016,473:3951-3964.doi:10.1042/BCJ20160606.
APA:
Zhong, Xiaowei,Sun, Bo,Vallmitjana, Alexander,Mi, Tao,Guo, Wenting...&Chen, S. R. Wayne.(2016).Suppression of ryanodine receptor function prolongs Ca2+ release refractoriness and promotes cardiac alternans in intact hearts.BIOCHEMICAL JOURNAL,473,
MLA:
Zhong, Xiaowei,et al."Suppression of ryanodine receptor function prolongs Ca2+ release refractoriness and promotes cardiac alternans in intact hearts".BIOCHEMICAL JOURNAL 473.(2016):3951-3964