高级检索
当前位置: 首页 > 详情页

Intra-spinal microstimulation may alleviate chronic pain after spinal cord injury

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Johns Hopkins Univ, Sch Med, Dept Anesthesiol & Crit Care Med, Baltimore, MD 21205 USA [2]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Anesthesiol & Pain Med, Wuhan 430030, Hubei, Peoples R China
出处:
ISSN:

关键词: Spinal cord injury Neuropathic pain Dorsal horn Spinal cord stimulation

摘要:
Chronic pain after spinal cord injury (SCI) is a form of central neuropathic pain that is debilitating and often refractory to current pharmacological treatments. Neurostimulation pain therapies, such as epidural spinal cord stimulation, have only moderate success in reducing SCI pain. The pathogenesis of SCI pain may involve a state of central neuronal hyperexcitability, especially in the spinal cord dorsal horn, that develops after injury. We hypothesize that the neuronal structures near the spinal cord injury site may be an important pain generator, and intraspinal microstimulation (ISMS) may normalize dorsal horn neuronal hyperexcitability and hence alleviate SCI pain. Specifically, ISMS may induce frequency-dependent conduction block on axons of afferent sensory neurons, in the spinothalamic tract and Lissauer's tract. ISMS may also facilitate primary afferent depolarization that elicits presynaptic inhibition of incoming afferent inputs. Together, these actions will reduce abnormal afferent inputs and ascending pain signals before they can reach the brain. Furthermore, ISMS may directly induce inhibitory postsynaptic potentials in dorsal horn neurons, and trigger the release of endogenous inhibitory neurotransmitters, opioids and serotonin to inhibit postsynaptic neurons and restore the compromised segmental pain inhibition after SCI. Finally, ISMS may alter the frequency and pattern of discharge such that the rostrally conducted impulses no longer code pain or activate brain areas concerned with pain signaling. Based on recent progress in,understanding spinal learning and plasticity, we also postulate that repetitive or long-term ISMS may help the dorsal horn "reset" neuronal excitability and regain normal pain processing for a prolonged period. By finely tuning the stimulation parameters (e.g., intensity, pulse width, frequency), position, and geometry of ISMS electrode, multiple spinal structures (e.g., dorsal horn, dorsal column, spinothalamic tract) may be modulated to induce synergistic pain inhibition. Our hypothesis can be readily tested in preclinical models of SCI pain by using a combination of in vivo electrophysiological (neuronal activity) and animal behavioral (pain response) approaches. Since ISMS electrodes stimulate the spinal structures directly, we expect that the effective stimulus intensity and energy consumption can be lower than that for epidural spinal cord stimulation. The proposed hypothesis may provide insights and rationales for developing a novel neurostimulation pain therapy by directly inhibiting the pain generators in the spinal cord, and ISMS may be an alternative strategy to treat SCI pain. (C) 2017 Elsevier Ltd. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
JCR分区:
出版当年[2015]版:
Q4 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q3 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者单位: [1]Johns Hopkins Univ, Sch Med, Dept Anesthesiol & Crit Care Med, Baltimore, MD 21205 USA [2]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Anesthesiol & Pain Med, Wuhan 430030, Hubei, Peoples R China
通讯作者:
通讯机构: [1]Johns Hopkins Univ, Sch Med, Dept Anesthesiol & Crit Care Med, Baltimore, MD 21205 USA [*1]Johns Hopkins Univ, Dept Anesthesiol CCM, Div Pain Med, 720 Rutland Ave,Ross 350, Baltimore, MD 21205 USA
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)