高级检索
当前位置: 首页 > 详情页

FNDC4 Inhibits RANKL-Induced Osteoclast Formation by Suppressing NF-κB Activation and CXCL10 Expression

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Orthoped,Wuhan 430030,Hubei,Peoples R China [2]Zhejiang Univ, Affiliated Hosp 2, Sch Med, Dept Orthoped Surg, Hangzhou, Zhejiang, Peoples R China
出处:
ISSN:

摘要:
FNDC4 acts as an anti-inflammatory factor on macrophages and improves mouse model of induced colitis. Considering osteoclast formation is characterized by the activation of inflammation-related pathways, we thus speculated that FNDC4 may play a pivotal role in this process. RT-qPCR analysis was performed to confirm the expression of osteoclast formation related genes in primary murine bone marrow macrophages (BMMs). RANKL-treated BMMs were cultured with FNDC4 to evaluate the effect of FNDC4 on osteoclast differentiation. TRAP staining and bone resorption pits assay were used to assess osteoclast formation and bone resorption, respectively. Luciferase assay and western blotting analysis were conducted to determine whether FNDC4 inhibited osteoclast formation via NF-kappa B signaling in RAW 264.7 cells. Furthermore, to identify gene signatures in FNDC4-treated BMMs and to use these to elucidate the underlying molecular mechanisms during osteoclast formation, we adopted a bioinformatics approach by downloading the GSE76172 gene expression profiling dataset from the Gene Expression Omnibus (GEO) database. FNDC4 inhibited RANKL-induced osteoclastogenesis and mature osteoclast resorptive function in a dose-dependent manner. Results of NF-kappa B luciferase assay suggested that FNDC4 could significantly suppress the RANKL-induced NF-kappa B transcriptional activity. Based on the protein-protein interaction network, CXCL10 was identified as the differentially expressed gene with the highest connectivity degree (degree = 23); it was drastically downregulated in the presence of FNDC4, but supplementation of CXCL10 (10 ng/mL) partially ameliorated the FNDC4-induced inhibition of osteoclast formation. Taken together, we speculated that FNDC4 could suppress osteoclast formation via NF-kappa B pathway and downregulation of CXCL10.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 3 区 生物
小类 | 3 区 生物工程与应用微生物 4 区 医学:研究与实验
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 生物工程与应用微生物 4 区 医学:研究与实验
JCR分区:
出版当年[2016]版:
Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q3 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q3 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Orthoped,Wuhan 430030,Hubei,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:586 今日访问量:1 总访问量:439 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)