高级检索
当前位置: 首页 > 详情页

Enrichment of Female Germline Stem Cells from Mouse Ovaries Using the Differential Adhesion Method

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Obstet & Gynecol, Wuhan, Hubei, Peoples R China [2]Hubei Univ Med, Tai He Hosp, Hubei Key Lab Embryon Stem Cell Res, Shiyan, Hubei, Peoples R China [3]Second Peoples Hosp, Dept Obstet & Gynecol, Yichang, Hubei, Peoples R China
出处:
ISSN:

关键词: Female germline stem cells Differential adhesion method AKT pathway Self-renewal

摘要:
Background/Aims: The isolation and establishment of female germline stem cells (FGSCs) is controversial because of questions regarding the reliability and stability of the isolation method using antibody targeting mouse vasa homologue (MVH), and the molecular mechanism of FGSCs self-renewal remains unclear. Thus, there needs to be a simple and reliable method for sorting FGSCs to study them. Methods: We applied the differential adhesion method to enrich FGSCs (DA-FGSCs) from mouse ovaries. Through four rounds of purification and 7-9 subsequent passages, DA-FGSC lines were established. In addition, we assessed the role of the phosphoinositide-3 kinase (PI3K)-AKT pathway in regulating FGSC self-renewal. Results: The obtained DA-FGSCs spontaneously differentiated into oocyte-like cells in vitro and formed functional eggs in vivo that were fertilized and produced healthy offspring. AKT was rapidly phosphorylated when the proliferation rate of FGSCs increased after 10 passages, and the addition of a chemical PI3K inhibitor prevented FGSCs self-renewal. Furthermore, over expression of AKT-induced proliferation and differentiation of FGSCs, c-Myc, Oct-4 and Gdf-9 levels were increased. Conclusions: The differential adhesion method provides a more feasible approach and is an easier procedure to establish FGSC lines than traditional methods. The AKT pathway plays an important role in regulation of the proliferation and maintenance of FGSCs. These findings could help promote stem cell studies and provide a better understanding of causes of ovarian infertility, thereby providing potential treatments for infertility. (C) 2018 The Author(s) Published by S Karger AG, Basel.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 2 区 生物
小类 | 2 区 生理学 3 区 细胞生物学
最新[2025]版:
大类 | 4 区 生物学
小类 | 4 区 细胞生物学 4 区 生理学
JCR分区:
出版当年[2016]版:
Q1 PHYSIOLOGY Q2 CELL BIOLOGY
最新[2024]版:
Q3 PHYSIOLOGY Q4 CELL BIOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Obstet & Gynecol, Wuhan, Hubei, Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Obstet & Gynecol, Wuhan, Hubei, Peoples R China [*1]Tongji Hosp, Jiefang Rd, Wuhan, Hubei, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)