高级检索
当前位置: 首页 > 详情页

IncRNA MALAT1/miR-205-5p axis regulates MPP+-induced cell apoptosis in MN9D cells by directly targeting LRRK2

| 认领 | 导出 |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Geriat, Wuhan 430030, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Emergency Med, Hang Kong Rd 13, Wuhan 430030, Hubei, Peoples R China
出处:
ISSN:

关键词: Parkinson's disease long non-coding RNA MALAT1 miR-205-5p LRRK2 apoptosis

摘要:
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), as a long chain non-coding RNA (IncRNA), has been reported to be upregulated in Parkinson's disease (PD). However, the mechanisms underlying this process remain unknown. Hence, to investigate the role of MALAT1 in PD, N-methyl-4-phenylpyridinium (MPP+) was used to induce PD in vitro in the MN9D dopaminergic neuronal cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to induce PD in vivo in C57BL/6 mice. Quantitative Real-Time PCR (qRT-PCR) and western blot assay showed that the expression levels of MALAT1 and leucine-rich repeat kinase (LRRK2) were increased, and that of miR-205-5p was decreased in the midbrains of mice in which PD was induced by MPTP. MALAT1 suppressed the expression of miR-205-5p in MN9D cells. The results of luciferase reporter assay indicated that LRRK2 was a direct target of miR-205-5p. Transfection with the miR-205-5p mimics decreased, whereas transfection with miR-205-5p inhibitor increased the expression levels of LRRK2 mRNA and protein. The cell counting kit-8 (CCK-8) and flow cytometry assays showed that overexpression of LRRK2 reduced the viability and promoted apoptosis in MN9D cells treated with MPP+. MALAT1 knockdown exerted a protective effect on the viability and apoptosis of MN9D cells treated with MPP+, which was abrogated by LRRK2 overexpression and miR-205-5p inhibition. Our study demonstrates that the MALAT1/miR-205-5p axis regulates MPP+-induced apoptosis in MN9D cells by targeting LRRK2, thereby improving our understanding of the molecular pathogenesis of PD.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 3 区 医学
小类 | 3 区 医学:研究与实验 3 区 肿瘤学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验 4 区 肿瘤学
JCR分区:
出版当年[2016]版:
Q2 MEDICINE, RESEARCH & EXPERIMENTAL Q3 ONCOLOGY
最新[2024]版:
Q3 MEDICINE, RESEARCH & EXPERIMENTAL Q4 ONCOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Geriat, Wuhan 430030, Hubei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)