Tens of millions of women suffer from infertility worldwide each year. In vitro fertilization (IVF) is the best choice for many such patients. However, IVF is expensive, time-consuming, and both physically and emotionally demanding. The first question that a patient usually asks before the IVF is how likely she will conceive, given her basic medical examination information. This paper proposes three approaches to predict the cumulative pregnancy rate after multiple oocyte pickup cycles. Experiments on 11,190 patients showed that first clustering the patients into different groups and then building a support vector machine model for each group can achieve the best overall performance. Our model could be a quick and economic approach for reliably estimating the cumulative pregnancy rate for a patient, given only her basic medical examination information, well before starting the actual IVF procedure. The predictions can help the patient make optimal decisions on whether to use her own oocyte or donor oocyte, how many oocyte pickup cycles she may need, whether to use embryo frozen, etc. They will also reduce the patient's cost and time to pregnancy, and improve her quality of life.
基金:
National Science Foundation of China [81601348]; Graduates' Innovation Fund, Huazhong University of Science and Technology [5003184032]
语种:
外文
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2018]版:
大类|2 区工程技术
小类|2 区计算机:信息系统3 区工程:电子与电气3 区电信学
最新[2025]版:
大类|4 区计算机科学
小类|4 区计算机:信息系统4 区工程:电子与电气4 区电信学
JCR分区:
出版当年[2017]版:
Q1ENGINEERING, ELECTRICAL & ELECTRONICQ1TELECOMMUNICATIONSQ1COMPUTER SCIENCE, INFORMATION SYSTEMS
最新[2023]版:
Q2COMPUTER SCIENCE, INFORMATION SYSTEMSQ2ENGINEERING, ELECTRICAL & ELECTRONICQ2TELECOMMUNICATIONS