高级检索
当前位置: 首页 > 详情页

Combination Therapy of TGF-β Blockade and Commensal-derived Probiotics Provides Enhanced Antitumor Immune Response and Tumor Suppression

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Natl Engn Res Ctr Nanomed, Wuhan 430074, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Ctr Human Genome Res, Key Lab Mol Biophys,Minist Educ, Wuhan 430074, Hubei, Peoples R China [3]Huazhong Univ Sci & Technol, Dept Biotechnol, Coll Life Sci & Technol, Wuhan 430074, Hubei, Peoples R China [4]Univ Penn, Perelman Sch Med, Dept Microbiol, Philadelphia, PA 19104 USA [5]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Hepat Surg Ctr, Wuhan 430030, Hubei, Peoples R China
出处:
ISSN:

关键词: TGF-beta blockade immunotherapy gut microbiota cancer treatment tumor immune microenvironment

摘要:
Galunisertib (Gal) is a transforming growth factor (TGF-beta) blockade which is being investigated as a potential tumor immunotherapy candidate drug in clinical trials. However, primary or acquired resistance is often found in the recruited cancer patients, which limits its clinical application. Tumor immune microenvironment can be regulated by intestinal microbiota, leading to different therapeutic outcomes. It is hypothesized that manipulation of cancer patients' intestinal microbiome in the early stage of therapy may be a promising strategy to improve the therapeutic efficacy of Gal. Methods: 4T1 and H22 subcutaneous tumor bearing mice were used to evaluate the therapeutic effect. Escherichia coli strain Nissle 1917 (EcN), a widely used probiotic bacteria, was orally delivered to the tumor bearing mice daily along with Gal treatment. Antitumor effect of the combination therapy was evaluated by tumor volume, histological staining of tumor tissues. Furthermore, flow cytometry was performed to analyze the alteration of immune microenvironment in tumor bed after treatment. The suppressing effect of the combination therapy on tumor invasiveness and metastasis was evaluated in both mice and zebrafish xenografts models. Fecal sample 16S rRNA gene sequencing was conducted to analyze changes of intestinal microbial diversity. The effect of intestinal microbiota on tumor suppression after receiving EcN was further tested by fecal transplant. Results: The therapeutic outcomes in tumor growth inhibition and metastasis suppression of Gal were significantly potentiated by EcN, resulting from the strengthened antitumor immunity. EcN was able to relieve the immunosuppressive tumor microenvironment, which was evidenced by enhanced tumor-specific effector T cells infiltration and dendritic cells activation. Intestinal microbiota was modulated by EcN, illustrated by a shift of gut microbiome toward certain beneficial bacteria. Conclusion: These results suggested that Gal combined with EcN might be a novel therapeutic approach with great potential of clinical implications for cancer prevention or treatment.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 1 区 医学
小类 | 1 区 医学:研究与实验
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 医学:研究与实验
JCR分区:
出版当年[2017]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Natl Engn Res Ctr Nanomed, Wuhan 430074, Hubei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)