高级检索
当前位置: 首页 > 详情页

Radiomics analysis based on multiparametric magnetic resonance imaging for differentiating early stage of cervical cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Hubei Univ Arts & Sci, Xiangyang Cent Hosp, Affiliated Hosp, Dept Radiol, Xiangyang, Peoples R China [2]Hubei Univ Arts & Sci Xiangyang, Xiangyang Cent Hosp, Affiliated Hosp, Dept Obstet & Gynaecol, Xiangyang, Peoples R China [3]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Radiol, Wuhan, Peoples R China
出处:
ISSN:

关键词: Radiomics magnetic resonance imaging cervical cancer treatment multiparametric

摘要:
Objective To investigate the performance of multiparametric magnetic resonance imaging (MRI)-based radiomics models in differentiating early stage of cervical cancer (Stage I-IIa vs. IIb-IV). Methods One hundred patients with cervical cancer who underwent preoperative MRI between June 2020 and March 2022 were retrospectively enrolled. Training (n = 70) and testing cohorts (n = 30) were assigned by stratified random sampling. The clinical and pathological features, including age, histological subtypes, tumor grades, and node status, were compared between the two cohorts by t-test or chi-square test. Radiomics features were extracted from each volume of interest (VOI) on T2-weighted images (T2WI) and apparent diffusion coefficient (ADC) maps. The data balance of the training cohort was resampled by synthesizing minority oversampling techniques. Subsequently, the adiomics signatures were constructed by the least absolute shrinkage and selection operator algorithm and minimum-redundancy maximum-relevance with 10-fold cross-validation. Logistic regression was applied to predict the cervical cancer stages (low [I-IIa]) and (high [IIb-IV] FIGO stages). The receiver operating characteristic curve (area under the curve [AUC]) and decision curve analysis were used to assess the performance of the radiomics model. Results The characteristics of age, histological subtypes, tumor grades, and node status were not significantly different between the low [I-IIa] and high [IIb-IV] FIGO stages (p > 0.05 for both the training and test cohorts). Three models based on T2WI, ADC maps, and the combined were developed based on six radiomics features from T2WI and three radiomics features from ADC maps, with AUCs of 0.855 (95% confidence interval [CI], 0.777-0.934) and 0.823 (95% CI, 0.727-0.919), 0.861 (95% CI, 0.785-0.936) and 0.81 (95% CI, 0.701-0.918), 0.934 (95% CI, 0.884-0.984) and 0.902 (95% CI, 0.832-0.972) in the training and test cohorts. Conclusion The radiomics models combined T2W and ADC maps had good predictive performance in differentiating the early stage from locally advanced cervical cancer.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 3 区 医学:内科
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 医学:内科
JCR分区:
出版当年[2022]版:
Q2 MEDICINE, GENERAL & INTERNAL
最新[2023]版:
Q1 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者单位: [1]Hubei Univ Arts & Sci, Xiangyang Cent Hosp, Affiliated Hosp, Dept Radiol, Xiangyang, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)