高级检索
当前位置: 首页 > 详情页

Application of a Radiomics Machine Learning Model for Differentiating Aldosterone-Producing Adenoma from Non-Functioning Adrenal Adenoma

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Radiol, Wuhan 430030, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Endocrinol, Wuhan 430030, Peoples R China
出处:
ISSN:

关键词: radiomics machine learning adrenal incidentaloma aldosterone-producing adenoma non-functioning adrenal adenoma

摘要:
To evaluate the secretory function of adrenal incidentaloma, this study explored the usefulness of a contrast-enhanced computed tomography (CECT)-based radiomics model for distinguishing aldosterone-producing adenoma (APA) from non-functioning adrenal adenoma (NAA). Overall, 68 APA and 60 NAA patients were randomly assigned (8:2 ratio) to either a training or a test cohort. In the training cohort, univariate and least absolute shrinkage and selection operator regression analyses were conducted to select the significant features. A logistic regression machine learning (ML) model was then constructed based on the radiomics score and clinical features. Model effectiveness was evaluated according to the receiver operating characteristic, accuracy, sensitivity, specificity, F1 score, calibration plots, and decision curve analysis. In the test cohort, the area under the curve (AUC) of the Radscore model was 0.869 [95% confidence interval (CI), 0.734-1.000], and the accuracy, sensitivity, specificity, and F1 score were 0.731, 1.000, 0.583, and 0.900, respectively. The Clinic-Radscore model had an AUC of 0.994 [95% CI, 0.978-1.000], and the accuracy, sensitivity, specificity, and F1 score values were 0.962, 0.929, 1.000, and 0.931, respectively. In conclusion, the CECT-based radiomics and clinical radiomics ML model exhibited good diagnostic efficacy in differentiating APAs from NAAs; this non-invasive, cost-effective, and efficient method is important for the management of adrenal incidentaloma.

语种:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 工程技术
小类 | 3 区 工程:生物医学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2021]版:
Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Radiol, Wuhan 430030, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)