高级检索
当前位置: 首页 > 详情页

DecLog: Decentralized Logging in Non-Volatile Memory for Time Series Database Systems

| 导出 | |

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Wuhan, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Wuhan, Peoples R China [3]Zhejiang Univ, Hangzhou, Peoples R China [4]HKUST, Hong Kong, Peoples R China [5]Aalborg Univ, Aalborg, Denmark
出处:
ISSN:

摘要:
Growing demands for the efficient processing of extreme-scale time series workloads call for more capable time series database management systems (TSDBMS). Specifically, to maintain consistency and durability of transaction processing, systems employ write-ahead logging (WAL) whereby transactions are committed only after the related log entries are flushed to disk. However, when faced with massive I/O, this becomes a throughput bottleneck. Recent advances in byte-addressable Non-Volatile Memory (NVM) provide opportunities to improve logging performance by persisting logs to NVM instead. Existing studies typically track complex transaction dependencies and use barrier instructions of NVM to ensure log ordering. In contrast, few studies consider the heavy-tailed characteristics of time series workloads, where most transactions are independent of each other. We propose DecLog, a decentralized NVM-based logging system that enables concurrent logging of TSDBMS transactions. Specifically, we propose data-driven log sequence numbering and relaxed ordering strategies to track transaction dependencies and resolve serialization issues. We also propose a parallel logging method to persist logs to NVM after being compressed and aligned. An experimental study on the YCSB-TS benchmark offers insight into the performance properties of DecLog, showing that it improves throughput by up to 4.6x while offering lower recovery time in comparison to the open source TSDBMS Beringei.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 计算机科学
小类 | 2 区 计算机:理论方法 2 区 计算机:信息系统
最新[2025]版:
大类 | 2 区 计算机科学
小类 | 2 区 计算机:信息系统 2 区 计算机:理论方法
JCR分区:
出版当年[2021]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 COMPUTER SCIENCE, THEORY & METHODS
最新[2024]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 COMPUTER SCIENCE, THEORY & METHODS

影响因子: 最新[2024版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Wuhan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)