高级检索
当前位置: 首页 > 详情页

Wireless Deep Brain Stimulation by Ultrasound-Responsive Molecular Piezoelectric Nanogenerators

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 自然指数

单位: [1]National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. [2]Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. [3]Ordered Matter Science Research Center, Southeast University, Nanjing, Jiangsu 211189, China. [4]Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
出处:
ISSN:

关键词: battery-free electrical stimulator ultrasonic energy harvesters ultrasound nanogenerators deep brain stimulation

摘要:
Implantable neural stimulation devices are becoming prevalent in bioelectronic medicine for the precise treatment of various clinical diseases. Nevertheless, the limited lifespan and buckling size of the implanted devices remain significant obstacles for chronic clinical application. In this study, we developed an ultrasound-driven battery-free neurostimulator based on a high-performance mini-sized nanogenerator and demonstrated its successful application for the deep-brain-stimulation (DBS) therapy of Parkinson's disease in a rat model. This soft piezoelectric-triboelectric hybrid nanogenerators (PTNG) are made of porous thin-films of molecular piezoelectric materials, which have great advantages of facile, scalable, low-temperature, and flexible processing. Without any bucky accessory control circuits, the subcutaneously implanted soft PTNG can function as a wirelessly powered neurostimulator, allowing for the adjustment of stimulation parameters through external programmable ultrasound pulses. This DBS electroceutical application of energy-harvesting thin-film devices based on molecular piezoelectric materials provides valuable insight into the development of a soft high-performance bioelectronic device.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 材料科学
小类 | 1 区 纳米科技 1 区 化学:综合 1 区 材料科学:综合 1 区 物理化学
最新[2025]版:
大类 | 1 区 材料科学
小类 | 1 区 化学:综合 1 区 材料科学:综合 1 区 纳米科技
JCR分区:
出版当年[2021]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 CHEMISTRY, PHYSICAL Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY
最新[2023]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 CHEMISTRY, PHYSICAL Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)