高级检索
当前位置: 首页 > 详情页

Strontium-doped calcium silicate scaffolds with enhanced mechanical properties and tunable biodegradability fabricated by vat photopolymerization

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China [2]Minist Educ, Engn Res Ctr Ceram Mat Addit Mfg, Wuhan 430074, Peoples R China [3]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Orthoped Surg,Wuhan 430030,Peoples R China [4]Huazhong Univ Sci & Technol, Inst Resource Biol & Biotechnol, Coll Life Sci & Technol, Dept Biotechnol, Wuhan 430074, Peoples R China [5]Wuhan Zeqing Technol Co Ltd, Wuhan 430074, Peoples R China [6]City Univ Hong Kong, Ctr Adv Struct Mat, Dept Mech Engn, Hong Kong, Peoples R China [7]City Univ Hong Kong, Shenzhen Res Inst, Ctr Adv Struct Mat, Dept Mech Engn,Greater Bay Joint Div,Shenyang Natl, Shenzhen 518057, Peoples R China
出处:
ISSN:

关键词: Strontium-doped calcium silicate 3D printing Vat photopolymerization Mechanical property Biodegradability

摘要:
Strontium-doped calcium silicate (SrCS) bioceramics have demonstrated outstanding vasculogenic ability to repair large segmental bone defects, while their poor mechanical properties and rapid degradation rate remain the major obstacles in clinical treatment. Here, we proposed a novel approach to significantly enhance the mechanical properties of SrCS bioceramics with tunable biodegradability using micron barium titanate-based (BTA) powders as a dopant. Biomimetic SrCS-BTA scaffolds with triply periodic minimal surface structures were fabricated by vat photopolymerization. The effects of BTA content on microtopography, mechanical properties, degradability, and bioactivity of composite scaffolds were studied. On the one hand, the BTA greatly increased the maximum densification rate of SrCS ceramics by 84.37%, while the corresponding densification temperature decreased by 95 degrees C. On the other hand, CaTiO3 generated by the reaction of SrCS and BTA intercepted cracks at the grain boundaries, and thus, the mechanical properties were enhanced due to the pinning effect. The SrCS-40BTA scaffold exhibited much higher compressive strength and elastic modulus by 296% compared with the pure SrCS scaffold. The energy absorption of SrCS-40BTA scaffolds was 5.6 times higher than that of the pure SrCS scaffold. In addition, biocompatible SrCS-BTA scaffolds with lower degradation rates can play a supporting role in the process of repair for a longer duration. This work provides a promising strategy to fabricate biomimetic scaffolds with highly enhanced mechanical properties and tunable biodegradability for repairing damaged large segmental bone tissues.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 工程技术
小类 | 3 区 工程:生物医学 3 区 材料科学:生物材料
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 工程:生物医学 2 区 材料科学:生物材料
JCR分区:
出版当年[2021]版:
Q1 ENGINEERING, BIOMEDICAL Q1 MATERIALS SCIENCE, BIOMATERIALS
最新[2024]版:
Q1 ENGINEERING, BIOMEDICAL Q2 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2024版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China [2]Minist Educ, Engn Res Ctr Ceram Mat Addit Mfg, Wuhan 430074, Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China [2]Minist Educ, Engn Res Ctr Ceram Mat Addit Mfg, Wuhan 430074, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)