高级检索
当前位置: 首页 > 详情页

Microglial SIRT1 activation attenuates synapse loss in retinal inner plexiform layer via mTORC1 inhibition

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Ophthalmology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China [2]Institute of Reproductive Health, Center for Reproductive Medicine, TongjiMedical College, Huazhong University of Science and Technology, Wuhan,China. [3]Department of Anesthesiology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China.
出处:
ISSN:

关键词: Microglia Synaptic loss SIRT1 mTORC1 Deacetylation

摘要:
BackgroundOptic nerve injury (ONI) is a key cause of irreversible blindness and triggers retinal ganglion cells (RGCs) change and synapse loss. Microglia is the resistant immune cell in brain and retina and has been demonstrated to be highly related with neuron and synapse injury. However, the function of Sirtuin 1 (SIRT1), a neuroprotective molecule, in mediating microglial activation, retinal synapse loss and subsequent retinal ganglion cells death in optic nerve injury model as well as the regulatory mechanism remain unclear.MethodTo this end, optic nerve crush (ONC) model was conducted to mimic optic nerve injury. Resveratrol and EX527, highly specific activator and inhibitor of SIRT1, respectively, were used to explore the function of SIRT1 in vivo and vitro. Cx3Cr1-CreERT2/RaptorF/F mice were used to delete Raptor for inhibiting mammalian target of rapamycin complex 1 (mTORC1) activity in microglia. HEK293 and BV2 cells were transfected with plasmids to explore the regulatory mechanism of SIRT1.ResultsWe discovered that microglial activation and synapse loss in retinal inner plexiform layer (IPL) occurred after optic nerve crush, with later-development retinal ganglion cells death. SIRT1 activation induced by resveratrol inhibited microglial activation and attenuated synapse loss and retinal ganglion cells injury. After injury, microglial phagocytosed synapse and SIRT1 inhibited this process to protect synapse and retinal ganglion cells. Moreover, SIRT1 exhibited neuron protective effects via activating tuberous sclerosis complex 2 (TSC2) through deacetylation, and enhancing the inhibition effect of tuberous sclerosis complex 2 on mammalian target of rapamycin complex 1 activity.ConclusionOur research provides novel insights into microglial SIRT1 in optic nerve injury and suggests a potential strategy for neuroprotective treatment of optic nerve injury disease.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 医学
小类 | 1 区 免疫学 1 区 神经科学
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 免疫学 1 区 神经科学
JCR分区:
出版当年[2021]版:
Q1 IMMUNOLOGY Q1 NEUROSCIENCES
最新[2023]版:
Q1 IMMUNOLOGY Q1 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Department of Ophthalmology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)