高级检索
当前位置: 首页 > 详情页

Dexmedetomidine mitigates neuroinflammation and improves early postoperative neurocognitive dysfunction in rats by enhancing autophagy

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Anesthesiology,Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health,and Wuhan Clinical Research Center for Geriatric Anesthesia,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan,People’s Republic of China
出处:
ISSN:

关键词: autophagy dexmedetomidine LKB1/AMPK/ULK-1 signaling pathway neuroinflammation postoperative neurocognitive dysfunction

摘要:
Postoperative neurocognitive dysfunction (PND) is a common postoperative complication. Autophagy is correlated with the pathogenesis of PND. This study investigated the potential role of autophagy in the neuroprotection of dexmedetomidine (Dex) pretreatment in PND. The PND rat model was established by abdominal surgery. The cognitive function of rats was evaluated by Y-maze 3 days after surgery. Nissl staining assessed postoperative hippocampal damage. Immunofluorescence detected the expression of microglial activation (Iba-1) and autophagy-related protein (LC3B) in hippocampal tissues. Western blot detected the autophagy-related protein expression (Beclin 1, LC3B, and p62), proinflammatory cytokines, and the protein activation of the autophagy-related LKB1/AMPK/ULK-1 signaling pathway. RT-PCR quantified the expression of IL-1β, TNF-α, and IL6. In this study, we found that Dex pretreatment improved spatial memory function impairment and reduced abdominal surgery-induced hippocampal tissue damage. Dex pretreatment significantly increased the expression of Beclin 1 and LC3 II/I and decreased the expression of p62 in the hippocampus after surgery. Furthermore, Dex effectively inhibited microglial activation and proinflammatory cytokines by enhancing autophagy in the hippocampus. Pretreatment with 3-MA, an autophagy inhibitor, significantly weakened the inhibitory effect of Dex on postoperative neuroinflammation. We further demonstrated that Dex suppressed surgery-induced neuroinflammation by activating the LKB1/AMPK/ULK-1 signaling pathway. In conclusion, our study indicated that Dex inhibited hippocampal neuroinflammation and ameliorated PND by enhancing autophagy after surgery in rats, which was related to the LKB1/AMPK/ULK-1 signaling pathway. These findings provide a potential therapeutic prospect for PND.NEW & NOTEWORTHY Dex inhibits hippocampal neuroinflammation and attenuates early cognitive impairment by enhancing autophagy following surgery in rats. Dex may protect postoperative cognitive function by activating the LKB1/AMPK/ULK-1 signaling pathway.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 3 区 神经科学 3 区 生理学
最新[2025]版:
大类 | 4 区 医学
小类 | 3 区 生理学 4 区 神经科学
JCR分区:
出版当年[2021]版:
Q2 PHYSIOLOGY Q3 NEUROSCIENCES
最新[2024]版:
Q3 NEUROSCIENCES Q3 PHYSIOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Department of Anesthesiology,Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health,and Wuhan Clinical Research Center for Geriatric Anesthesia,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan,People’s Republic of China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)