高级检索
当前位置: 首页 > 详情页

Nasopharyngeal Carcinoma Subtype Discovery via Immune Cell Scores from Tumor Microenvironment

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Otolaryngol Head & Neck Surg, 1095 Jiefang Ave, Wuhan 430030, Peoples R China
出处:
ISSN:

摘要:
Background. Nasopharyngeal carcinoma (NPC) is one of the most prevalent cancers with a poor prognosis. Immunotherapy, especially immune checkpoint blockade (ICB), is becoming a potential therapeutic choice for NPC patients. Thus, the identification of patients who could benefit from immunotherapy is clinically significant. Methods. The NPC expression profiles from GSE102349 were used to calculate the cell scores of the tumor microenvironment (TME). The consensus clustering method was utilized to identify the potential molecular subtypes among NPC samples. The hub genes were selected from subtype-specific genes by bioinformatics analysis. Machine learning models, including random forest (RF) and support vector machine (SVM) algorithms, were constructed to predict the immune subtype. Results. In the present study, we identified two TME subtypes among NPC patients. Patients with the S1 subtype have higher levels of immune cells, immune checkpoint genes, and prognosis. Using expression data profiles of NPC patients, we constructed machine learning models for predicting TME subtypes of NPC patients. This model consists of 8 genes (LCK, CD247, FYN, ZAP70, SH2D1A, CD3D, CD3E, and CD3G). Among them, LCK, FYN, SH2D1A, and CD3D were associated with better prognoses. Among the two constructed models, SVM exhibited a higher area under curve (AUC) of 0.977, when compared with RF (AUC = 0:966). The web server based on the constructed machine learning models will contribute to the identification of NPC patients likely to benefit from ICB therapies. Conclusions. This study identified NPC subtypes and provided an accurate model to select individuals who are most likely to respond to ICB.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 4 区 免疫学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 免疫学
JCR分区:
出版当年[2021]版:
Q3 IMMUNOLOGY
最新[2024]版:
Q2 IMMUNOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Otolaryngol Head & Neck Surg, 1095 Jiefang Ave, Wuhan 430030, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)