高级检索
当前位置: 首页 > 详情页

A Graph Convolutional Multiple Instance Learning on a Hypersphere Manifold Approach for Diagnosing Chronic Obstructive Pulmonary Disease in CT Images

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Zhejiang Lab, Res Ctr Healthcare Data Sci, Hangzhou 311121, Peoples R China [2]Binzhou Med Univ Hosp, Dept Radiol, Binzhou 256603, Peoples R China [3]Shihezi Univ, Affiliated Hosp 1, Sch Med, Dept Radiol, Shihezi 832008, Peoples R China [4]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Radiol, Wuhan 430030, Peoples R China [5]Chinese Acad Sci, Univ Chinese Acad Sci, Zhejiang Canc Hosp, Inst Basic Med & Canc IBMC,Canc Hosp,Dept Radiol, Hangzhou 310022, Peoples R China [6]Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, MIIT Key Lab Pattern Anal & Machine Intelligence, Nanjing 211106, Peoples R China
出处:
ISSN:

关键词: Chronic obstructive pulmonary disease (COPD) computed tomography (CT) graph convolution hypersphere manifold multiple instance learning (MIL)

摘要:
obstructive pulmonary disease (COPD) is a prevalent chronic disease with high morbidity and mortality. The early diagnosis of COPD is vital for clinical treatment, which helps patients to have a better quality of life. Because COPD can be ascribed to chronic bronchitis and emphysema, lesions in a computed tomography (CT) image can present anywhere inside the lung with different types, shapes and sizes. Multiple instance learning (MIL) is an effective tool for solving COPD discrimination. In this study, a novel graph convolutional MIL with the adaptive additive margin loss (GCMIL-AAMS) approach is proposed to diagnose COPD by CT. Specifically, for those early stage patients, the selected instance-level features can be more discriminative if they were learned by our proposed graph convolution and pooling with self-attention mechanism. The AAMS loss can utilize the information of COPD severity on a hypersphere manifold by adaptively setting the angular margins to improve the performance, as the severity can be quantified as four grades by pulmonary function test. The results show that our proposed GCMIL-AAMS method provides superior discrimination and generalization abilities in COPD discrimination, with areas under a receiver operating characteristic curve (AUCs) of 0.960 +/- 0.014 and 0.862 +/- 0.010 in the test set and external testing set, respectively, in 5-fold stratified cross validation; moreover, it demonstrates that graph learning is applicable to MIL and suggests that MIL may be adaptable to graph learning.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 工程技术
小类 | 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:信息系统 2 区 计算机:跨学科应用
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:跨学科应用
JCR分区:
出版当年[2020]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
最新[2024]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS

影响因子: 最新[2024版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Zhejiang Lab, Res Ctr Healthcare Data Sci, Hangzhou 311121, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:898 今日访问量:0 总访问量:636 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)