单位:[1]Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China[2]Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China放射科华中科技大学同济医学院附属同济医院[3]MR Scientific Marketing, Siemens Healthineers Ltd, Shanghai, China[4]MR Collaboration, Siemens Healthineers Ltd, Guangzhou, China
This work was supported, in part, by the National Natural
Science Grant number: 61731009 and Xing-Fu-Zhi-Hua Foundation
of East China Normal University.
第一作者单位:[1]Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
Zhang Jing,Zhan Chenao,Zhang Chenxiu,et al.Fully automatic classification of breast lesions on multi-parameter MRI using a radiomics model with minimal number of stable, interpretable features[J].RADIOLOGIA MEDICA.2023,128(2):160-170.doi:10.1007/s11547-023-01594-w.
APA:
Zhang Jing,Zhan Chenao,Zhang Chenxiu,Song Yang,Yan Xu...&Yang Guang.(2023).Fully automatic classification of breast lesions on multi-parameter MRI using a radiomics model with minimal number of stable, interpretable features.RADIOLOGIA MEDICA,128,(2)
MLA:
Zhang Jing,et al."Fully automatic classification of breast lesions on multi-parameter MRI using a radiomics model with minimal number of stable, interpretable features".RADIOLOGIA MEDICA 128..2(2023):160-170