高级检索
当前位置: 首页 > 详情页

Multi-omics consensus portfolio to refine the classification of lung adenocarcinoma with prognostic stratification, tumor microenvironment, and unique sensitivity to first-line therapies

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Oncol, Wuhan, Peoples R China [2]Univ Southampton, Fac Environm & Life Sci, Biol Sci, Southampton, England [3]Univ Southampton, Inst Life Sci, Southampton, England [4]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Thorac Surg, Wuhan, Peoples R China [5]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Thorac Surg, Wuhan 430030, Peoples R China [6]Univ Southampton, Fac Environm & Life Sci, Biol Sci, Southampton SO17 1BJ, England [7]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Oncol, Wuhan 430030, Peoples R China
出处:
ISSN:

关键词: Lung cancer multi-omics profiles precision medicine prognosis model tumor microenvironment

摘要:
Background: Molecular classification of lung adenocarcinoma (LUAD) based on transcriptomic features has been widely studied. The complementarity of data obtained from multilayer molecular biology could help the LUAD classification via combining multi-omics information.Methods: We successfully divided samples from the The Cancer Genome Atlas (TCGA) (n=437) into four subtypes (CS1, CS2, CS3 and CS4) by 10 comprehensive multi-omics clustering methods in the "movics" R package. Meanwhile, external validation sets from different sequencing technologies proved the robustness of the grouping model. The relationship between subtypes, prognosis, molecular features, tumor microenvironment and response to first-line therapy was further analyzed. Next we used univariate Cox regression analysis and Lasso regression analysis to explore the application of biomarkers in clinical prognosis and constructed a prognostic model.Results: CS1 showed the worst overall survival (OS) among all four clusters, possibly related to its poor immune infiltration, higher tumor mutation and worse chromosomal stability. Patients in different subtypes differed significantly in cancer stem cell characteristics, activation of cancer-related pathways, sensitivity to chemotherapy and immunotherapy. The prognostic model showed good predictive performance. The 1-, 2-and 3-year areas under the curve of risk score were 0.779, 0.742 and 0.678, respectively. Seven genes (DKK1, TSPAN7, ID1, DLGAP5, HHIPL2, CD40 and SEMA3C) used to build the model may be potential therapeutic targets for LUAD. Conclusions: Four LUAD subtypes with different molecular characteristics and clinical implications were identified successfully through bioinformatic analysis. Our results may contribute to precision medicine and inform the development of rational clinical strategies for targeted and immune therapies.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 医学
小类 | 2 区 肿瘤学 2 区 呼吸系统
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学 3 区 呼吸系统
JCR分区:
出版当年[2020]版:
Q1 ONCOLOGY Q1 RESPIRATORY SYSTEM
最新[2024]版:
Q1 RESPIRATORY SYSTEM Q2 ONCOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Oncol, Wuhan, Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Oncol, Wuhan, Peoples R China [2]Univ Southampton, Fac Environm & Life Sci, Biol Sci, Southampton, England [3]Univ Southampton, Inst Life Sci, Southampton, England [4]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Thorac Surg, Wuhan, Peoples R China [5]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Thorac Surg, Wuhan 430030, Peoples R China [6]Univ Southampton, Fac Environm & Life Sci, Biol Sci, Southampton SO17 1BJ, England [7]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Oncol, Wuhan 430030, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)