高级检索
当前位置: 首页 > 详情页

Gambogic Acid Induces Pyroptosis of Colorectal Cancer Cells through the GSDME-Dependent Pathway and Elicits an Antitumor Immune Response

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Canc Biol Res Ctr,Key Lab Minist Educ,Wuhan 430030,Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Gynecol Oncol,Wuhan 430030,Peoples R China
出处:
ISSN:

关键词: colorectal cancer gambogic acid pyroptosis caspase-3/GSDME

摘要:
Pyroptosis is a recently identified form of programmed cell death (PCD) that exerts a vital influence on the antitumor immune response. GA, a xanthone structure isolated from gamboge resin, is a naturally occurring bioactive ingredient with several anticancer activities, such as activities that affect cell cycle arrest, apoptosis, and autophagy. Here, we found that GA decreased the viability of the CRC cell lines, HCT116 and CT26, in a dose- and time-dependent manner, and multiple pores and large bubbles in the membranes, which are morphological characteristics of pyroptosis, were observed by light microscopy and transmission electron microscopy (TEM). Furthermore, the cleavage of gasdermin E (GSDME) was observed after exposure to GA, along with concomitant activation of caspase-3. Additionally, GSDME-dependent pyroptosis triggered by GA could be attenuated by siRNA-mediated knockdown of GSDME and treatment with the caspase-3 inhibitor. Moreover, we found that GA induced pyroptosis and significantly inhibited tumor growth in CT26 tumorbearing mice. Strikingly, significantly increased proportions of CD3+ T cells, cytotoxic T lymphocytes (CTLs), and dendritic cells (DCs) were observed in the tumor microenvironment in the GA-treated groups. Moreover, significantly increased proportions of CTLs and effector memory T cells (TEM) (CD8(+) CD44(+) CD62L(-)) were also detected in the spleens of the GA-treated groups, suggesting that the pyroptosis-induced immune response generated a robust memory response that mediated protective immunity. In this study, we revealed a previously unrecognized mechanism by which GA induces GSDME-dependent pyroptosis and enhances the anticancer immune response. Based on this mechanism, GA is a promising antitumor drug for CRC treatment that induces caspase-3-GSDMEdependent pyroptosis. This study provides novel insight into cancer chemoimmunotherapy.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 医学
小类 | 3 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
JCR分区:
出版当年[2020]版:
Q1 ONCOLOGY
最新[2024]版:
Q2 ONCOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Canc Biol Res Ctr,Key Lab Minist Educ,Wuhan 430030,Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Gynecol Oncol,Wuhan 430030,Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Canc Biol Res Ctr,Key Lab Minist Educ,Wuhan 430030,Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Gynecol Oncol,Wuhan 430030,Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:622 今日访问量:0 总访问量:452 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)