高级检索
当前位置: 首页 > 详情页

Volumetric visceral fat machine learning phenotype on CT for differential diagnosis of inflammatory bowel disease

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Radiol,1095 Jiefang Ave,Wuhan 430030,Hubei,Peoples R China [2]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Biomed Engn Dept, Wuhan, Peoples R China [3]Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan, Peoples R China
出处:
ISSN:

关键词: Crohn's disease Ulcerative colitis Visceral adipose tissue Radiomics Convolutional neural network

摘要:
Objectives To investigate whether volumetric visceral adipose tissue (VAT) features extracted using radiomics and three-dimensional convolutional neural network (3D-CNN) approach are effective in differentiating Crohn's disease (CD) and ulcerative colitis (UC). Methods This retrospective study enrolled 316 patients (mean age, 36.25 +/- 13.58 [standard deviation]; 219 men) with confirmed diagnosis of CD and UC who underwent CT enterography between 2012 and 2021. Volumetric VAT was semi-automatically segmented on the arterial phase images. Radiomics analysis was performed using principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) logistic regression algorithm. We developed a 3D-CNN model using VAT imaging data from the training cohort. Clinical covariates including age, sex, modified body mass index, and disease duration that impact VAT were added to the machine learning model for adjustment. The model's performance was evaluated on the testing cohort separating from the model's development process by its discrimination and clinical utility. Results Volumetric VAT radiomics analysis with LASSO had the highest AUC value of 0.717 (95% CI, 0.614-0.820), though difference of diagnostic performance among the 3D-CNN model (AUC = 0.693; 95% CI, 0.587-0.798) and radiomics analysis with PCA (AUC = 0.662; 95% CI, 0.548-0.776) and LASSO have not reached statistical significance (all p > 0.05). The radiomics score was higher in UC than in CD on the testing cohort (mean +/- SD, UC 0.29 +/- 1.05 versus CD -0.60 +/- 1.25; p < 0.001). The LASSO model with adjustment of clinical covariates reached an AUC of 0.775 (95%CI, 0.683-0.868). Conclusion The developed volumetric VAT-based radiomics and 3D-CNN models provided comparable and effective performance for the characterization of CD from UC.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2021]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Radiol,1095 Jiefang Ave,Wuhan 430030,Hubei,Peoples R China [2]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Biomed Engn Dept, Wuhan, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)