高级检索
当前位置: 首页 > 详情页

Application of weighted co-expression network analysis and machine learning to identify the pathological mechanism of Alzheimer's disease

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Zhejiang Hosp, Dept Pediat, Hangzhou, Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Neurol Surg,Wuhan,Peoples R China [3]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Wuhan, Peoples R China
出处:
ISSN:

关键词: Braak stages random forest WGCNA ssGSEA neurodegeneration

摘要:
Aberrant deposits of neurofibrillary tangles (NFT), the main characteristic of Alzheimer's disease (AD), are highly related to cognitive impairment. However, the pathological mechanism of NFT formation is still unclear. This study explored differences in gene expression patterns in multiple brain regions [entorhinal, temporal, and frontal cortex (EC, TC, FC)] with distinct Braak stages (0- VI), and identified the hub genes via weighted gene co-expression network analysis (WGCNA) and machine learning. For WGCNA, consensus modules were detected and correlated with the single sample gene set enrichment analysis (ssGSEA) scores. Overlapping the differentially expressed genes (DEGs, Braak stages 0 vs. I-VI) with that in the interest module, metascape analysis, and Random Forest were conducted to explore the function of overlapping genes and obtain the most significant genes. We found that the three brain regions have high similarities in the gene expression pattern and that oxidative damage plays a vital role in NFT formation via machine learning. Through further filtering of genes from interested modules by Random Forest, we screened out key genes, such as LYN, LAPTM5, and IFI30. These key genes, including LYN, LAPTM5, and ARHGDIB, may play an important role in the development of AD through the inflammatory response pathway mediated by microglia.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 医学
小类 | 2 区 老年医学 3 区 神经科学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 老年医学 3 区 神经科学
JCR分区:
出版当年[2020]版:
Q1 GERIATRICS & GERONTOLOGY Q1 NEUROSCIENCES
最新[2023]版:
Q2 GERIATRICS & GERONTOLOGY Q2 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Zhejiang Hosp, Dept Pediat, Hangzhou, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)