高级检索
当前位置: 首页 > 详情页

Increased Methyl-CpG-Binding Domain Protein 2 Promotes Cigarette Smoke-Induced Pulmonary Hypertension

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Natl Clin Res Ctr Resp Dis,Wuhan,Peoples R China [2]Qingdao Univ, Qingdao Municipal Hosp, Dept Resp & Crit Care Med, Qingdao, Peoples R China [3]Zhejiang Univ, Affiliated Hosp 1, Thorac Dis Ctr,Sch Med, Dept Resp Dis, Hangzhou, Peoples R China [4]Western Univ, Dept Sci, London, ON, Canada [5]Huazhong Univ Sci & Technol,Tongji Hosp,Dept & Inst Infect Dis,Tongji Med Coll,Wuhan,Peoples R China [6]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Hlth Management Ctr,Wuhan,Peoples R China
出处:
ISSN:

关键词: pulmonary hypertension MBD2 cigarette smoke pulmonary artery smooth muscle cells BMP2 pulmonary vascular remodeling

摘要:
Pulmonary hypertension (PH) is a chronic vascular proliferative disorder. While cigarette smoke (CS) plays a vital part in PH related to chronic obstructive pulmonary disease (COPD). Methyl-CpG-Binding Domain Protein 2 (MBD2) has been linked to multiple proliferative diseases. However, the specific mechanisms of MBD2 in CS-induced PH remain to be elucidated. Herein, the differential expression of MBD2 was tested between the controls and the PH patients' pulmonary arteries, CS-exposed rat models' pulmonary arteries, and primary human pulmonary artery smooth muscle cells (HPASMCs) following cigarette smoke extract (CSE) stimulation. As a result, PH patients and CS-induced rats and HPASMCs showed an increase in MBD2 protein expression compared with the controls. Then, MBD2 silencing was used to investigate the function of MBD2 on CSE-induced HPASMCs' proliferation, migration, and cell cycle progression. As a consequence, CSE could induce HPASMCs' increased proliferation and migration, and cell cycle transition, which were suppressed by MBD2 interference. Furthermore, RNA-seq, ChIP-qPCR, and MassARRAY were conducted to find out the downstream mechanisms of MBD2 for CS-induced pulmonary vascular remodeling. Subsequently, RNA-seq revealed MBD2 might affect the transcription of BMP2 gene, which furtherly altered the expression of BMP2 protein. ChIP-qPCR demonstrated MBD2 could bind BMP2's promotor. MassARRAY indicated that MBD2 itself could not directly affect DNA methylation. In sum, our results indicate that increased MBD2 expression promotes CS-induced pulmonary vascular remodeling. The fundamental mechanisms may be that MBD2 can bind BMP2's promoter and downregulate its expression. Thus, MBD2 may promote the occurrence of the CS-induced PH.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2020]版:
Q2 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Natl Clin Res Ctr Resp Dis,Wuhan,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:434 今日访问量:0 总访问量:419 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)